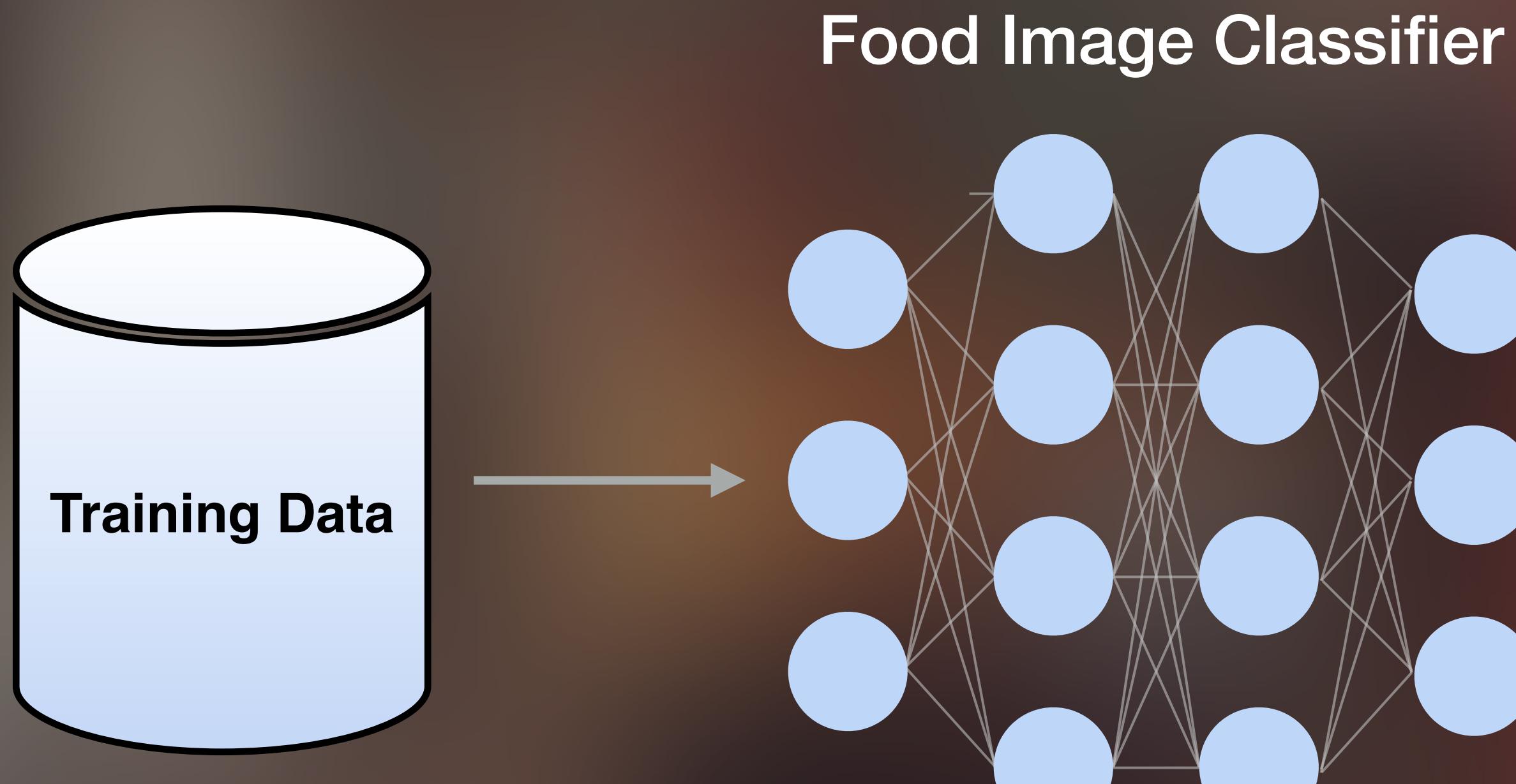


CS540 Introduction to Artificial Intelligence AI in the Real World

Sharon Yixuan Li
University of Wisconsin-Madison

April 29, 2021

A running example



Basic steps to build an ML system

The steps overview

- Step 1: collect data
- Step 2: look at your data
- Step 3: Create train/dev/test splits
- Step 4: build model
- Step 5: Evaluate your model
- Step 6: Diagnose error and repeat

Acquire and annotate data

Data should be diverse
(annotation can be expensive)

Data should be **realistic**

Ideal data sampled from the distribution your product will be run on.

Real photo taken by users

Professional ads photo

Look at your data.

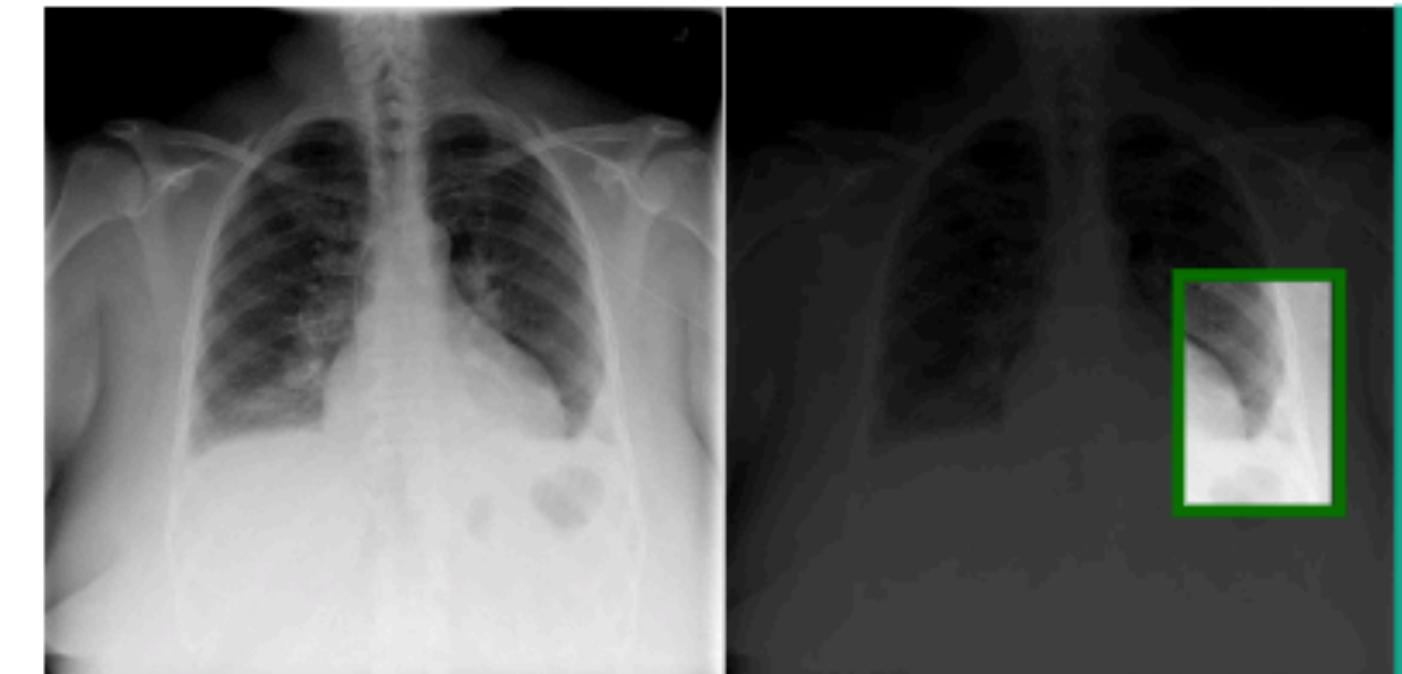
Look at your data.

- You have some food images, take a closer look at them!
- Food from Europe different than from Africa? from Asia?
- Any potential bias in your data?
- Have the right people look at your data.
- Do this at every stage!

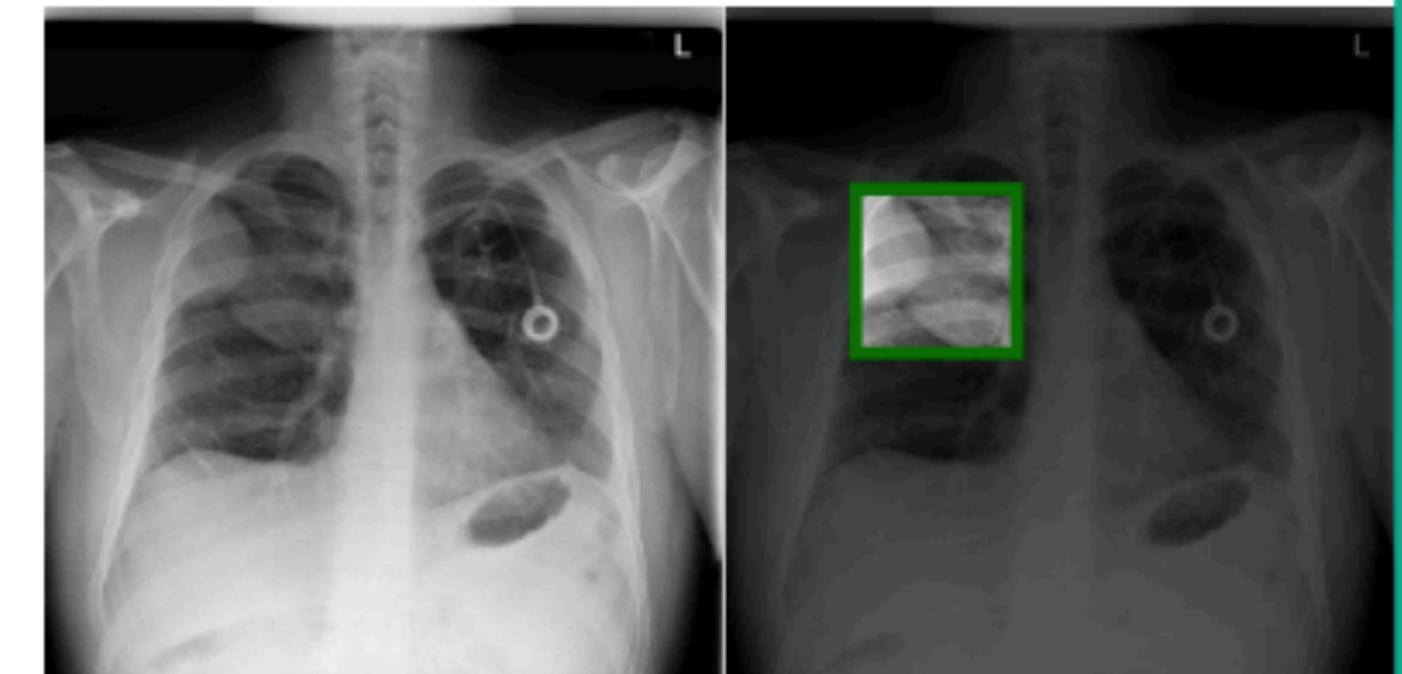
Expertise sometimes can be required

- Biomedical imaging annotation can be expensive
- Professionally trained radiologists
- Domain knowledge

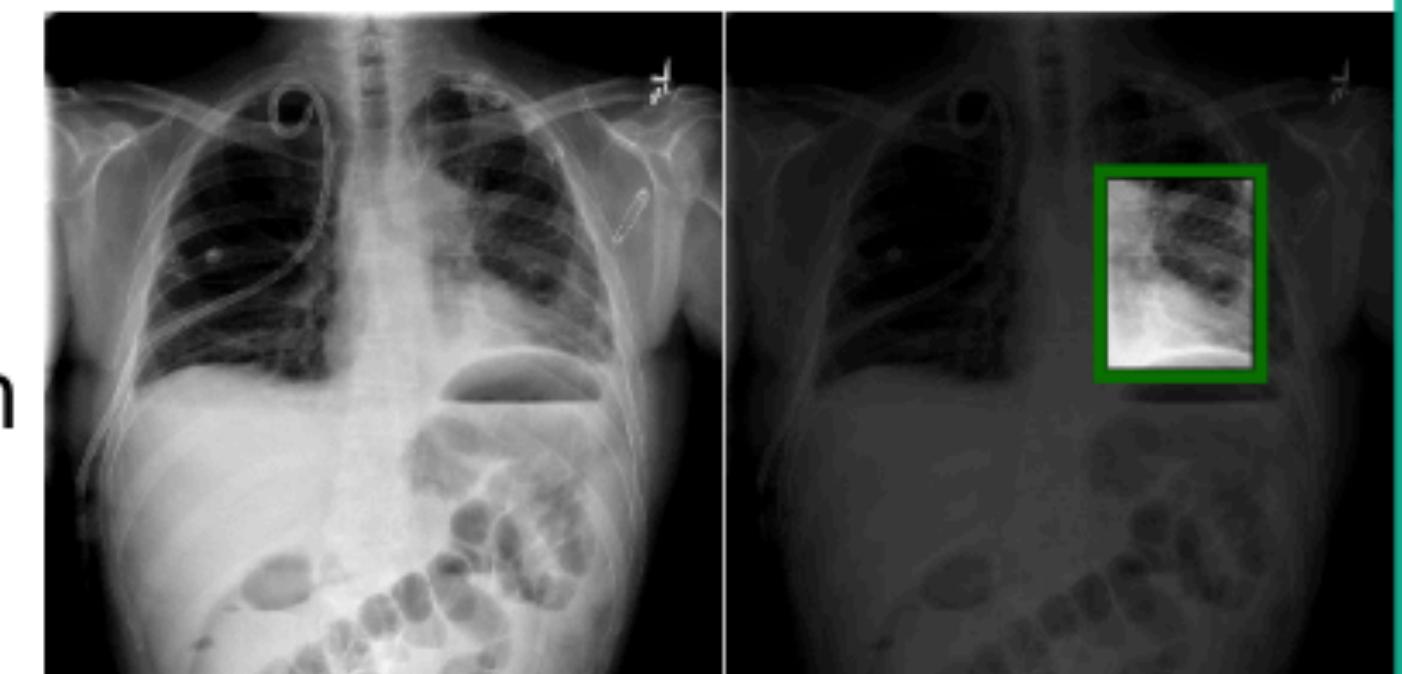
Effusion



Mass



Infiltration



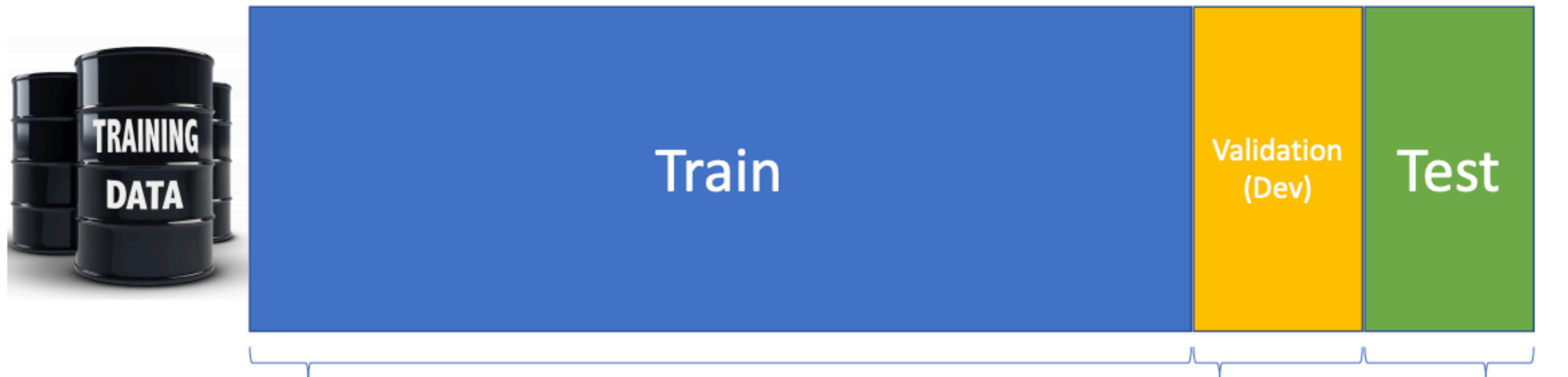
Input

Human annotation

Train/Dev/Test Split



Partitioning Data: Train, Test, and Validation



(1) Fit model to the training dataset

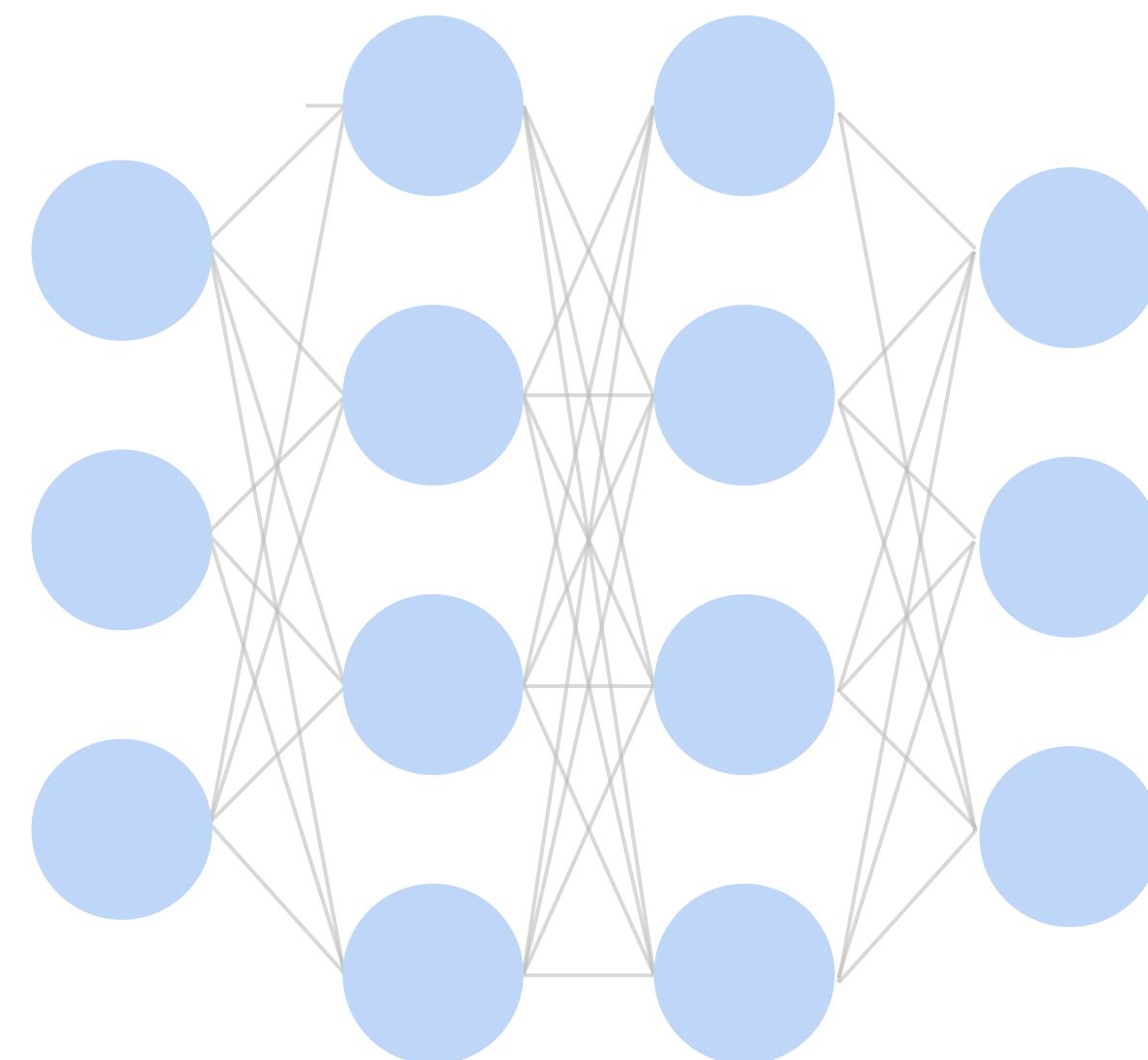
(2) Fit hyperparameters
to the *validation* (or
development) dataset

(3) Test model
performance
on the test set

What makes a good split?

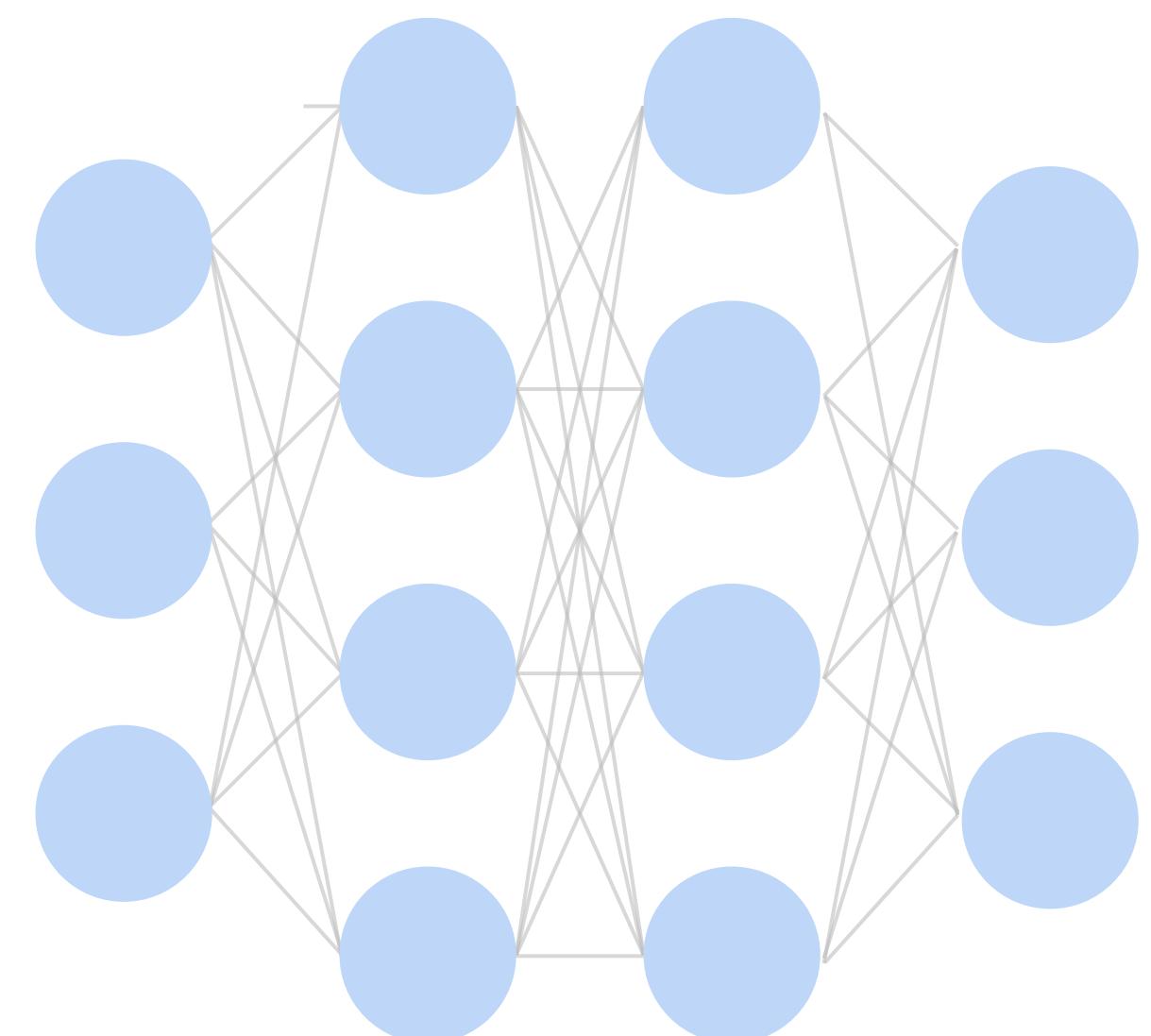
- **Ideal:** Train, test, & dev randomly sampled
 - Allows us to say train quality is approximately test quality
- Test is a **proxy** for the real world!
 - We'll talk more about this later...
- **Challenge:** Leakage.
 - (Nearly) same example in train and dev.
 - Causes performance to be overstated!
 - Eg., same senders in train and test?

Build your model.



Build your model.

- A bag of learning algorithms learned from class.
- Simple model vs. deep models

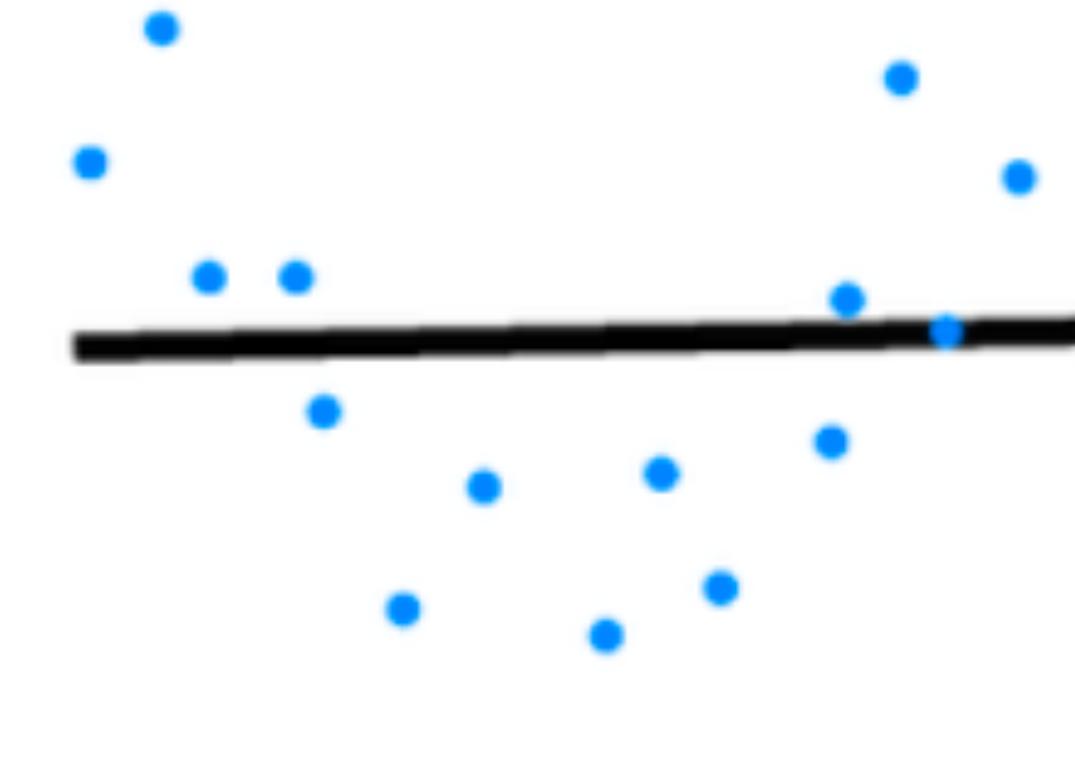
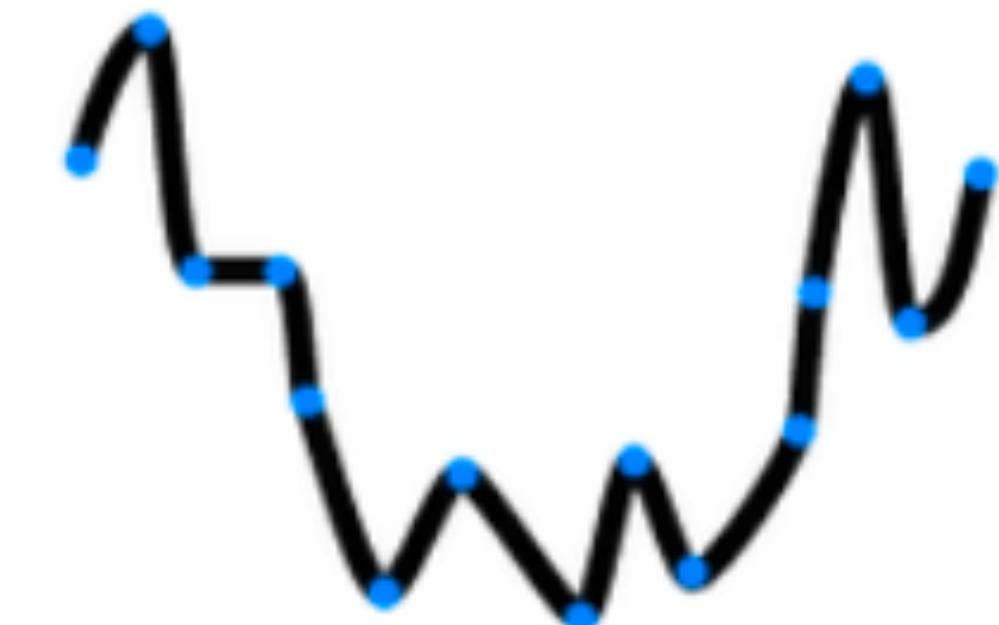


Underfitting Overfitting

Image credit: hackernoon.com

Model Capacity

- The ability to fit variety of functions
- Low capacity models struggles to fit training set
 - Underfitting
- High capacity models can memorize the training set
 - Overfitting

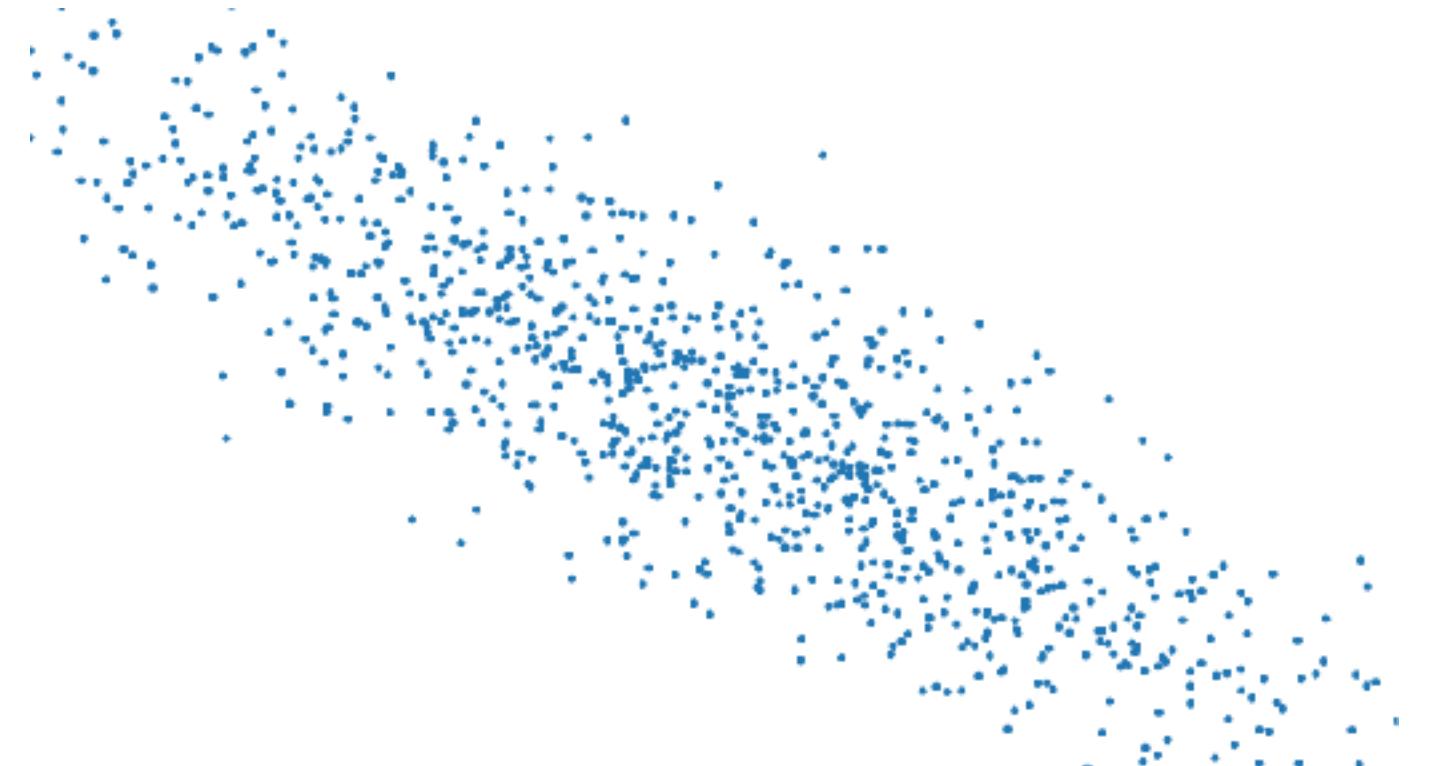
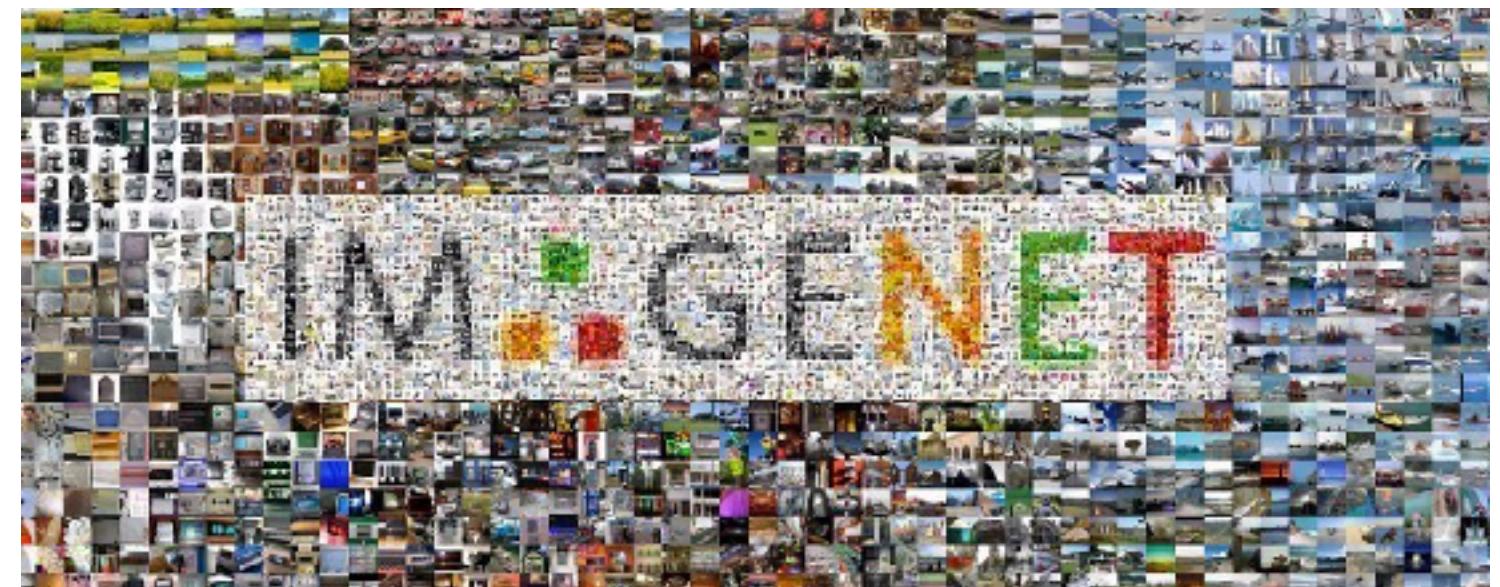


Underfitting and Overfitting

		Data complexity	
		Simple	Complex
Model capacity	Low	Normal	Underfitting
	High	Overfitting	Normal

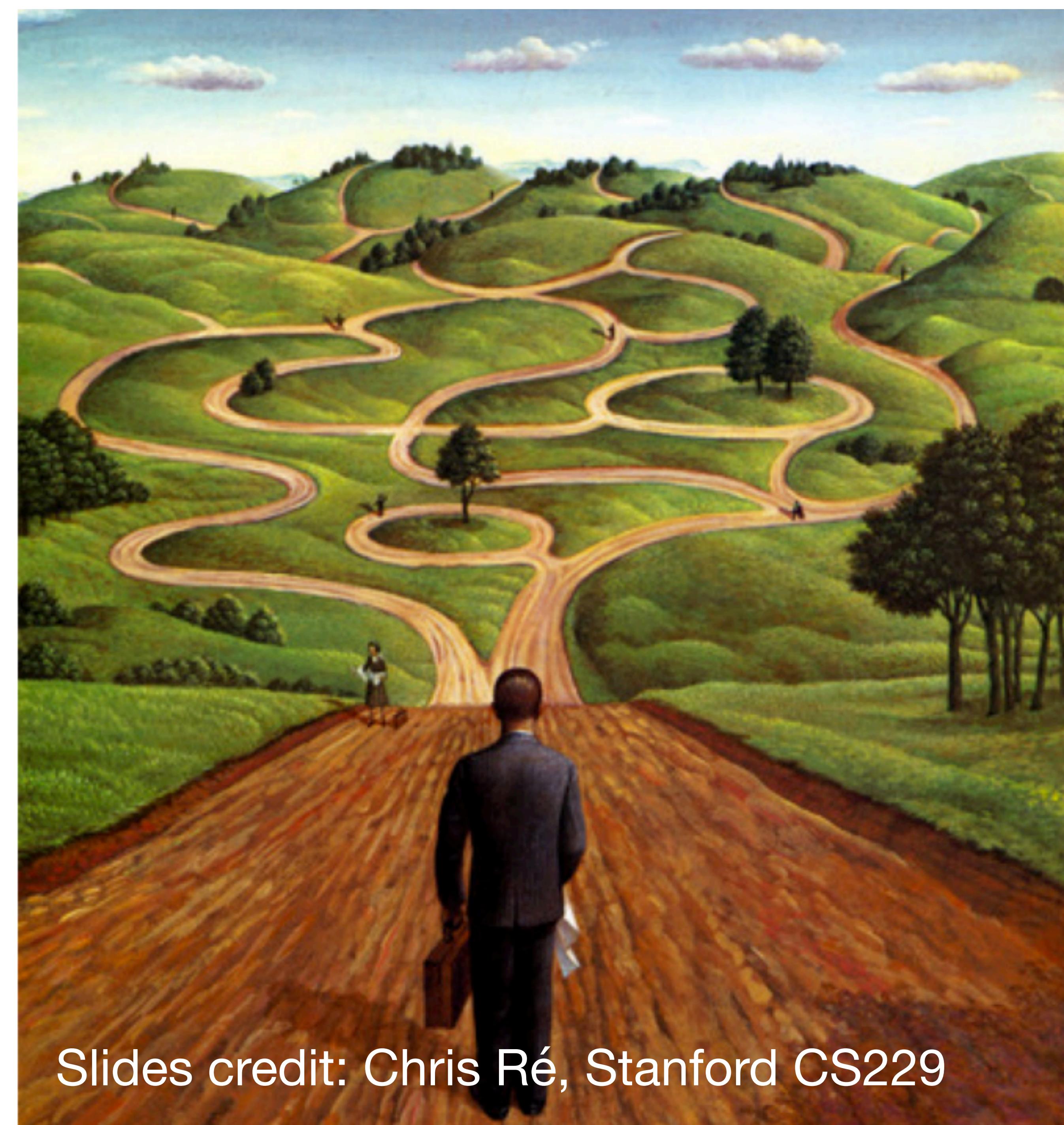
Data Complexity

- Multiple factors matters
 - # of examples
 - # of features in each example
 - time/space structure
 - # of labels



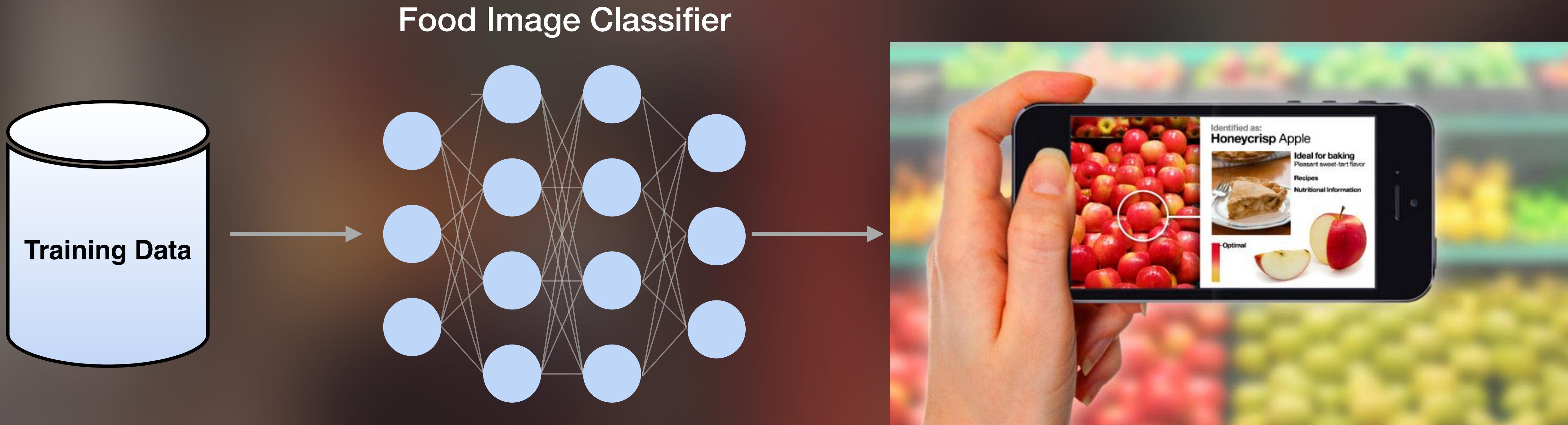
Ablation studies.

- You've built up a model, it has many different components.
 - Which matter?
 - which are stable?
- Remove one feature at a time!
 - *Adding* features + baseline could overestimate overlap. How?
- Measure performance.
 - Critical for research!



Slides credit: Chris Ré, Stanford CS229

A running example



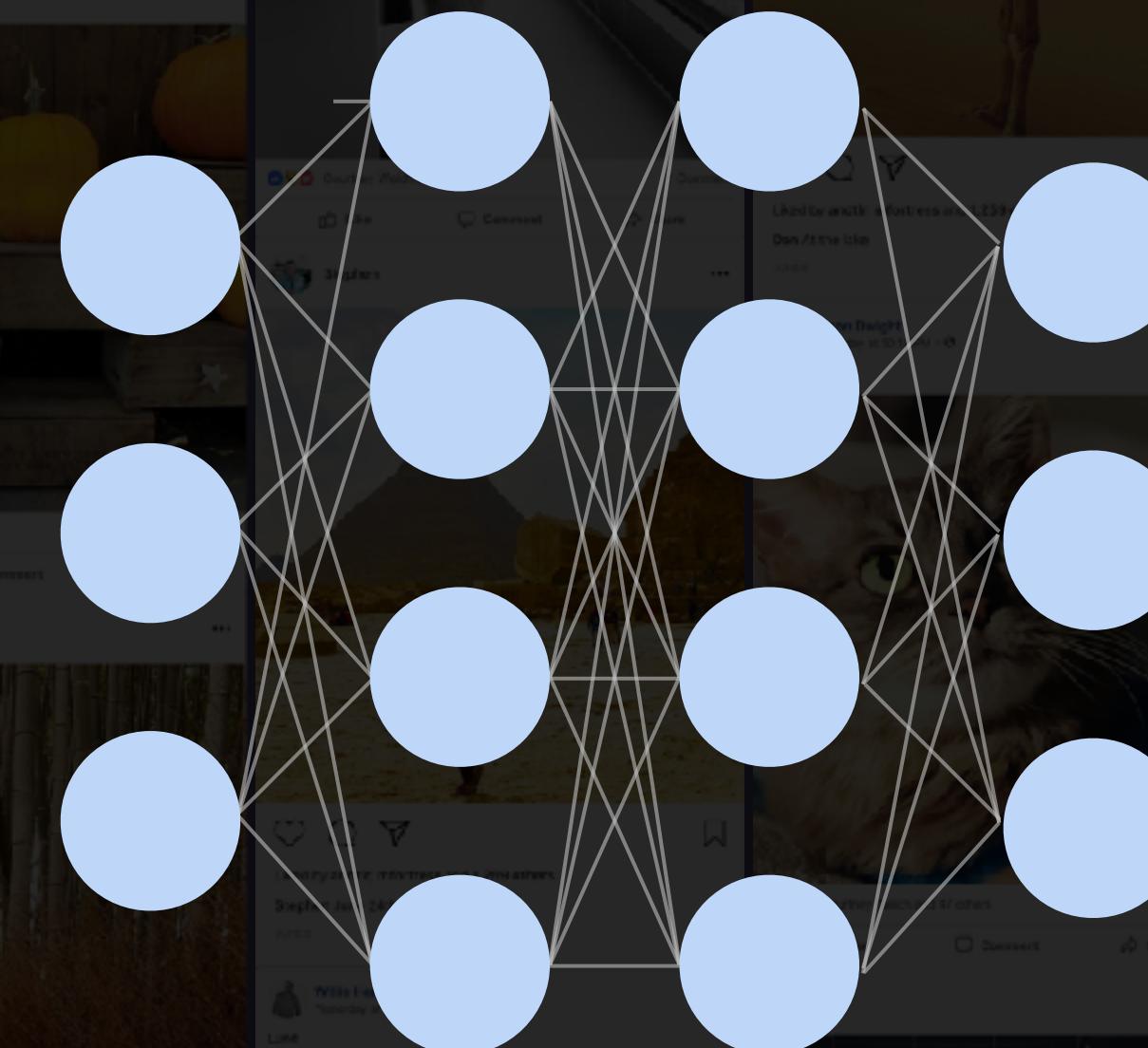
Closed-world: Training and testing distributions **match**

Open-world: Training and testing distributions **differ**

How to build machine learning models that function reliably in an **open world**?

Food Image Classifier

Out-of-distribution Uncertainty



This is
“out of
distribution”!



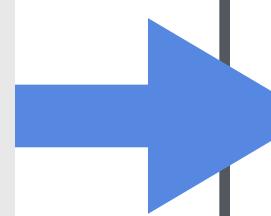
Photos from: CDC/GM

Out-of-distribution Uncertainty

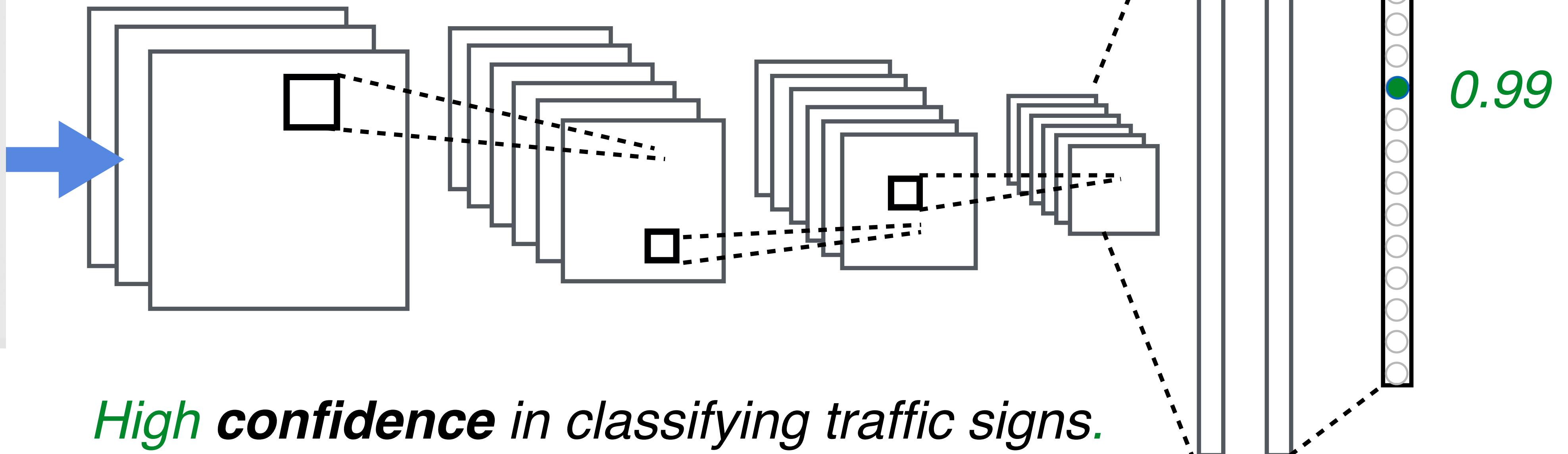
For safety critical applications

$$p_i(\mathbf{x}) = \frac{\exp(f_i(\mathbf{x}))}{\sum_{j=1}^N \exp(f_j(\mathbf{x}))},$$

Training examples:
traffic signs

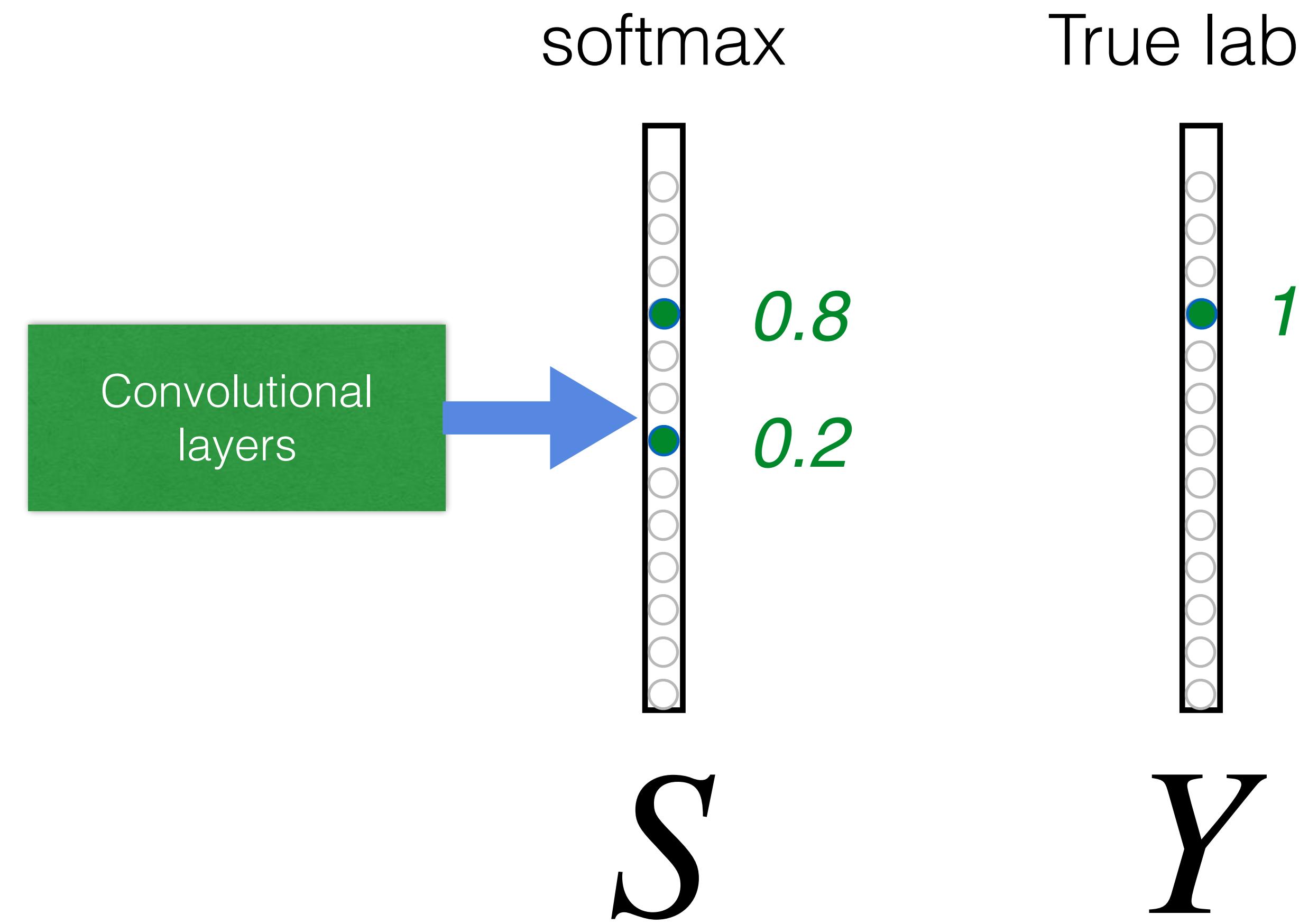


confidence: $\max_i p_i$



High confidence in classifying traffic signs.

Cross-Entropy Loss

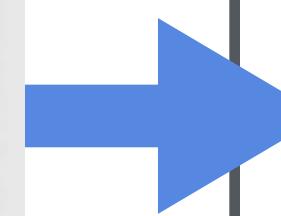


$$\begin{aligned} L_{CE} &= \sum_i -Y_i \log(S_i) \\ &= -\log(0.8) \end{aligned}$$

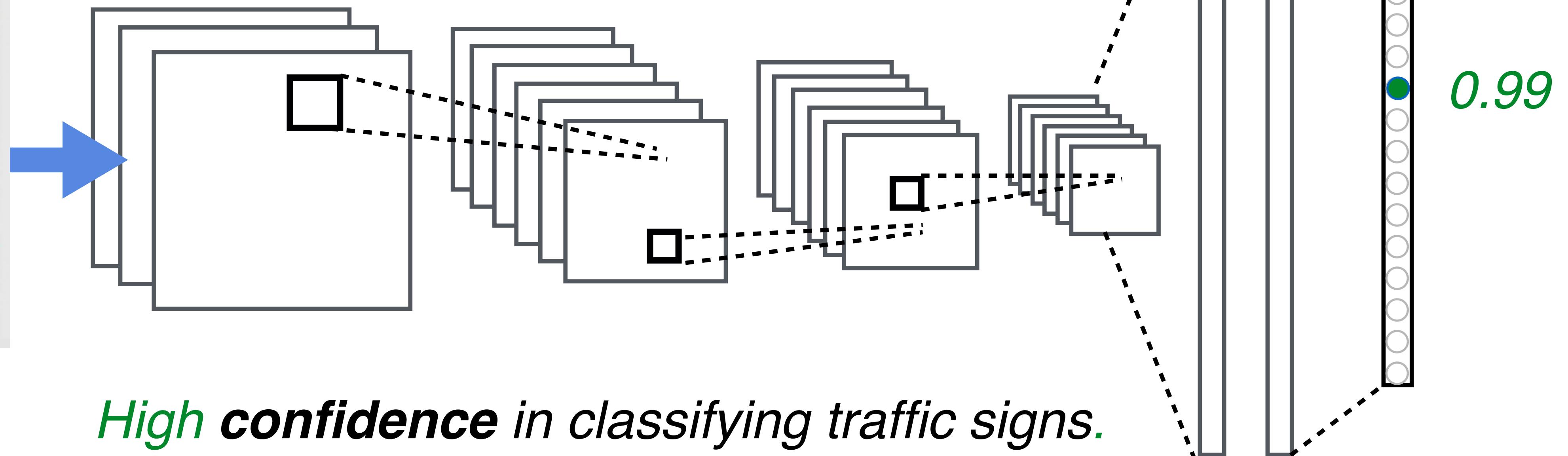
Goal: push \mathbf{S} and \mathbf{Y} to be identical

$$p_i(\mathbf{x}) = \frac{\exp(f_i(\mathbf{x}))}{\sum_{j=1}^N \exp(f_j(\mathbf{x}))},$$

Training examples:
traffic signs

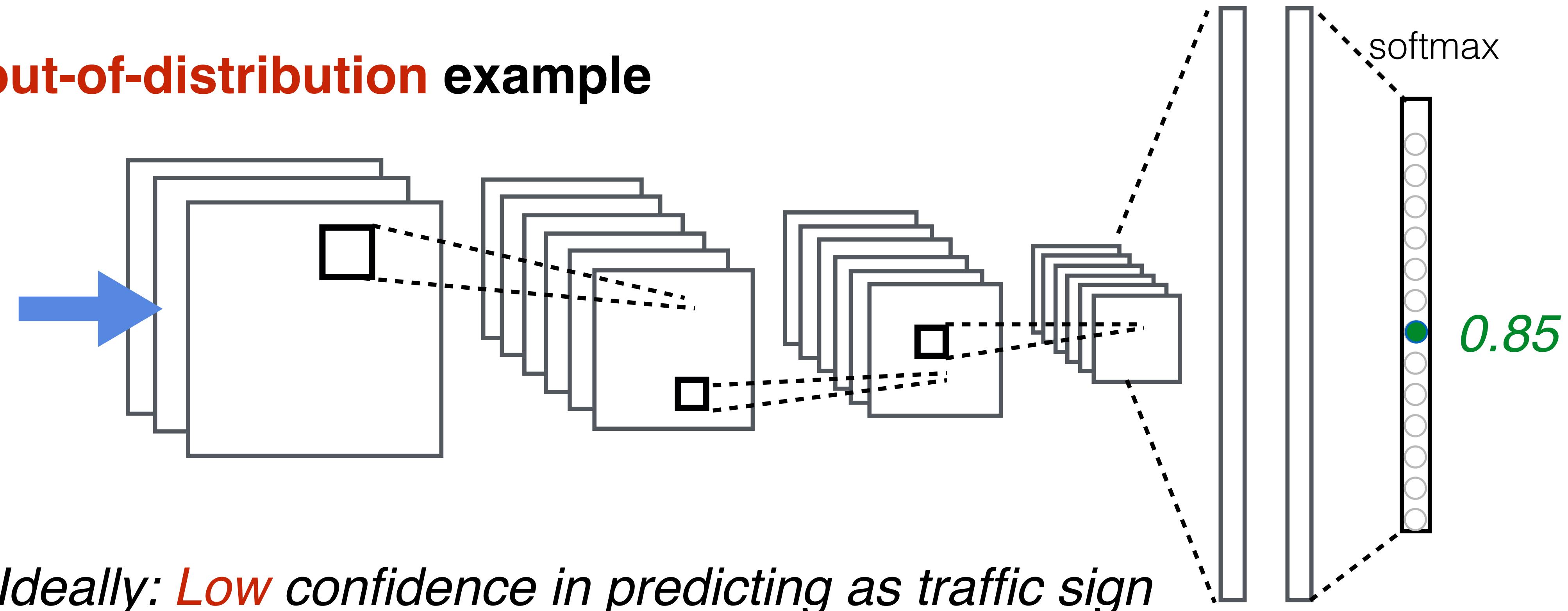


confidence: $\max_i p_i$



High confidence in classifying traffic signs.

Test time: out-of-distribution example

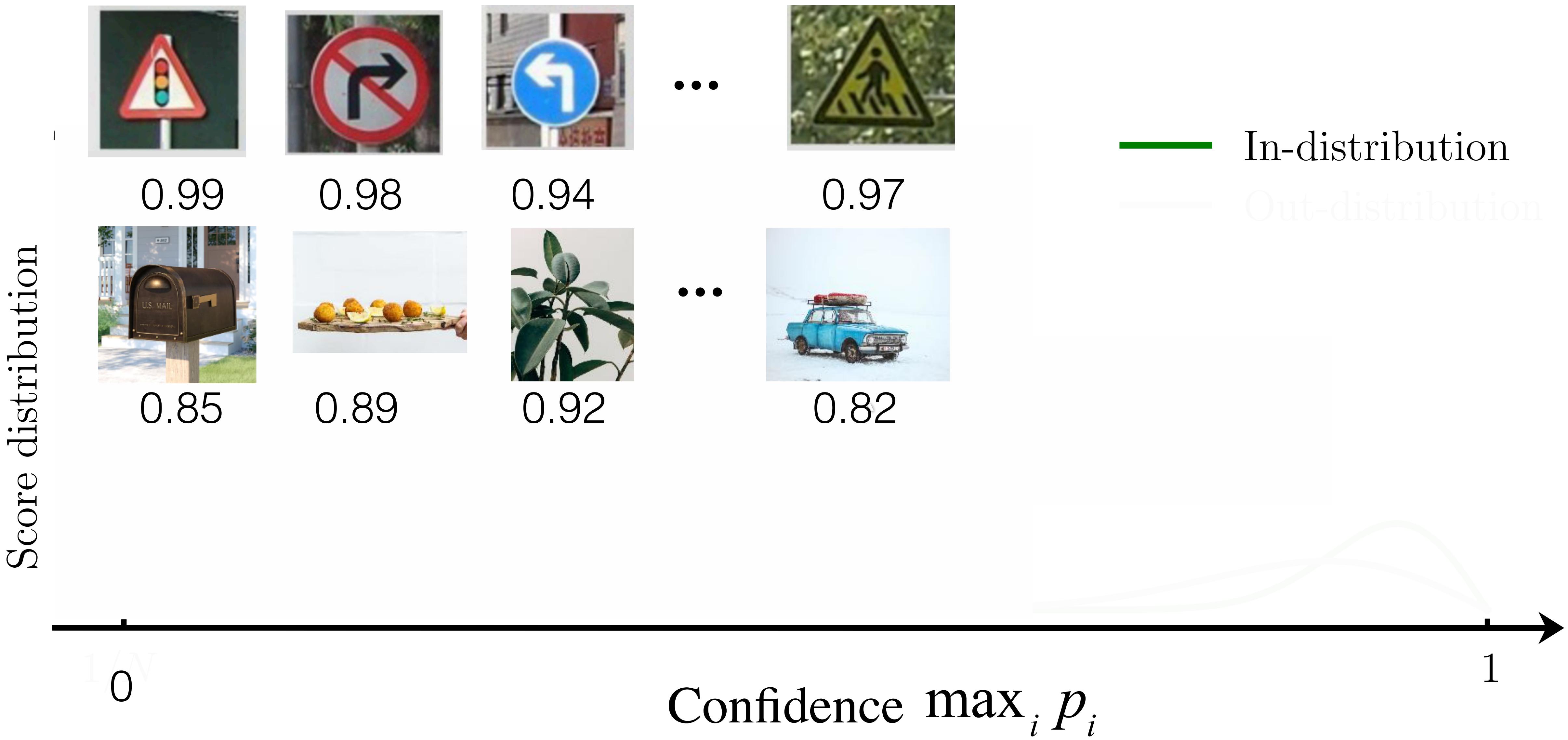


Ideally: *Low confidence in predicting as traffic sign*

Neural networks can be over-confident to
out-of-distribution (OOD) examples.

[Nguyen et al. 2015]

Confidence Score Distribution



How can we distinguish
out-of-distribution examples from
in-distribution data?

ODIN: Out-of-distribution Image Detector

[Liang et al. ICLR 2018]

Shiyou Liang

Sharon Y. Li

R. Srikant

ODIN: Out-of-distribution Image Detector

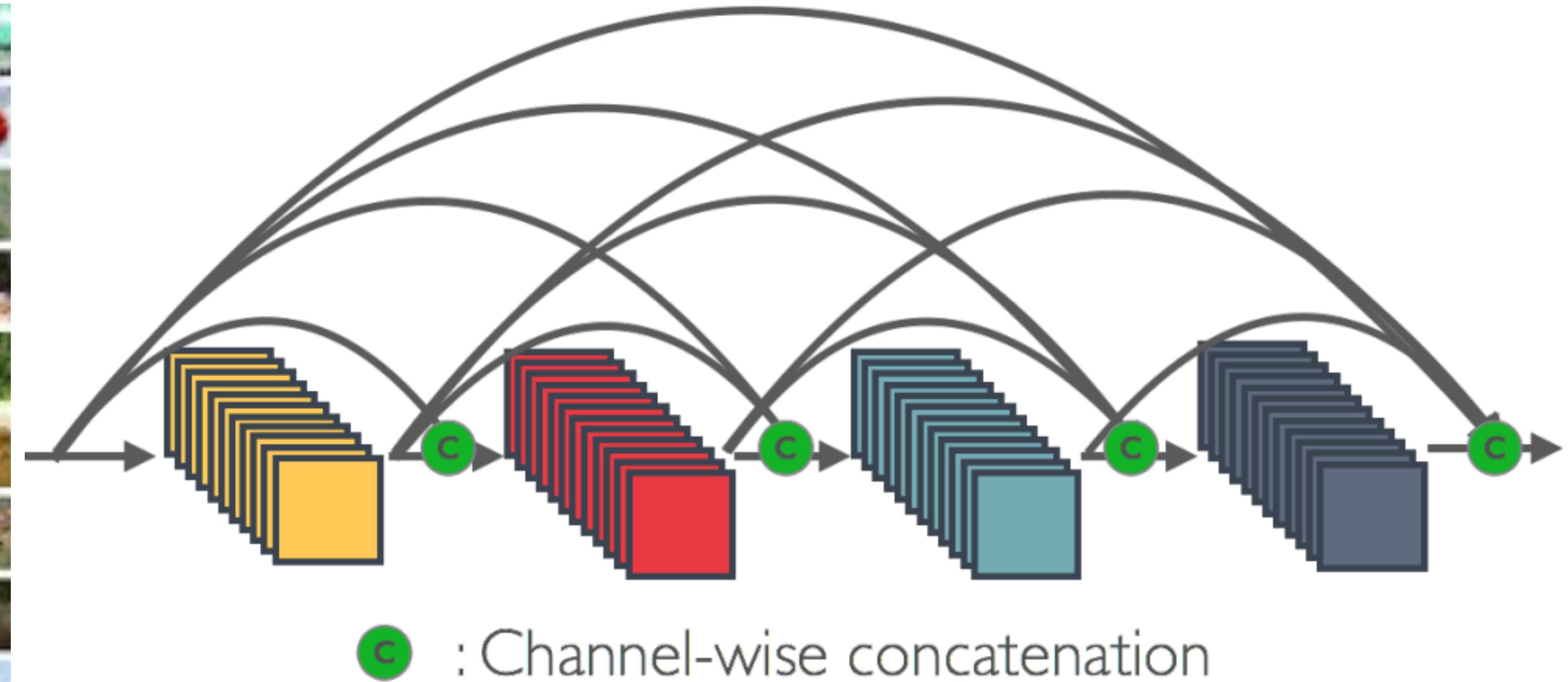
$$p_i(\mathbf{x}; T) = \frac{\exp(f_i(\mathbf{x})/T)}{\sum_{j=1}^N \exp(f_j(\mathbf{x})/T)},$$

- In-distribution
- Out-distribution

Score distribution

Training Task

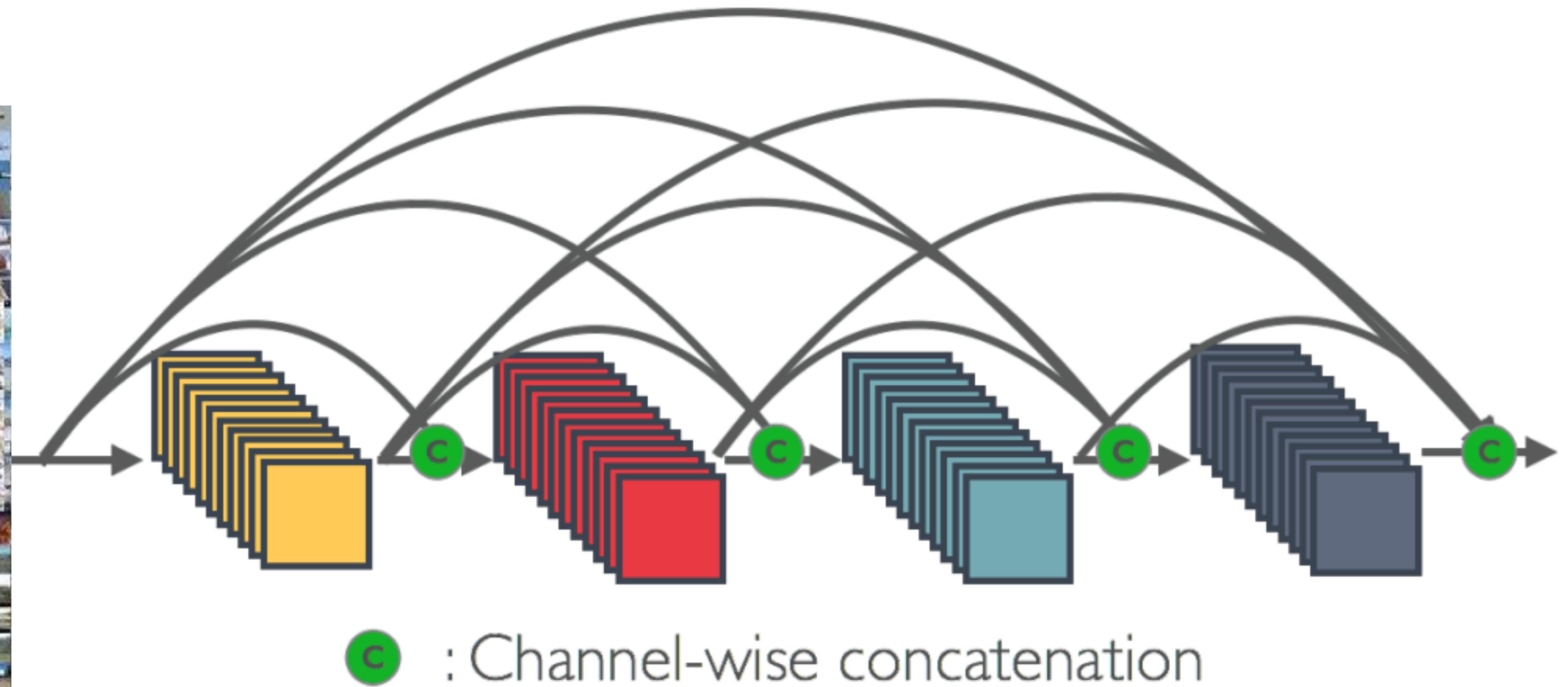
In-distribution data: CIFAR-10



● : Channel-wise concatenation

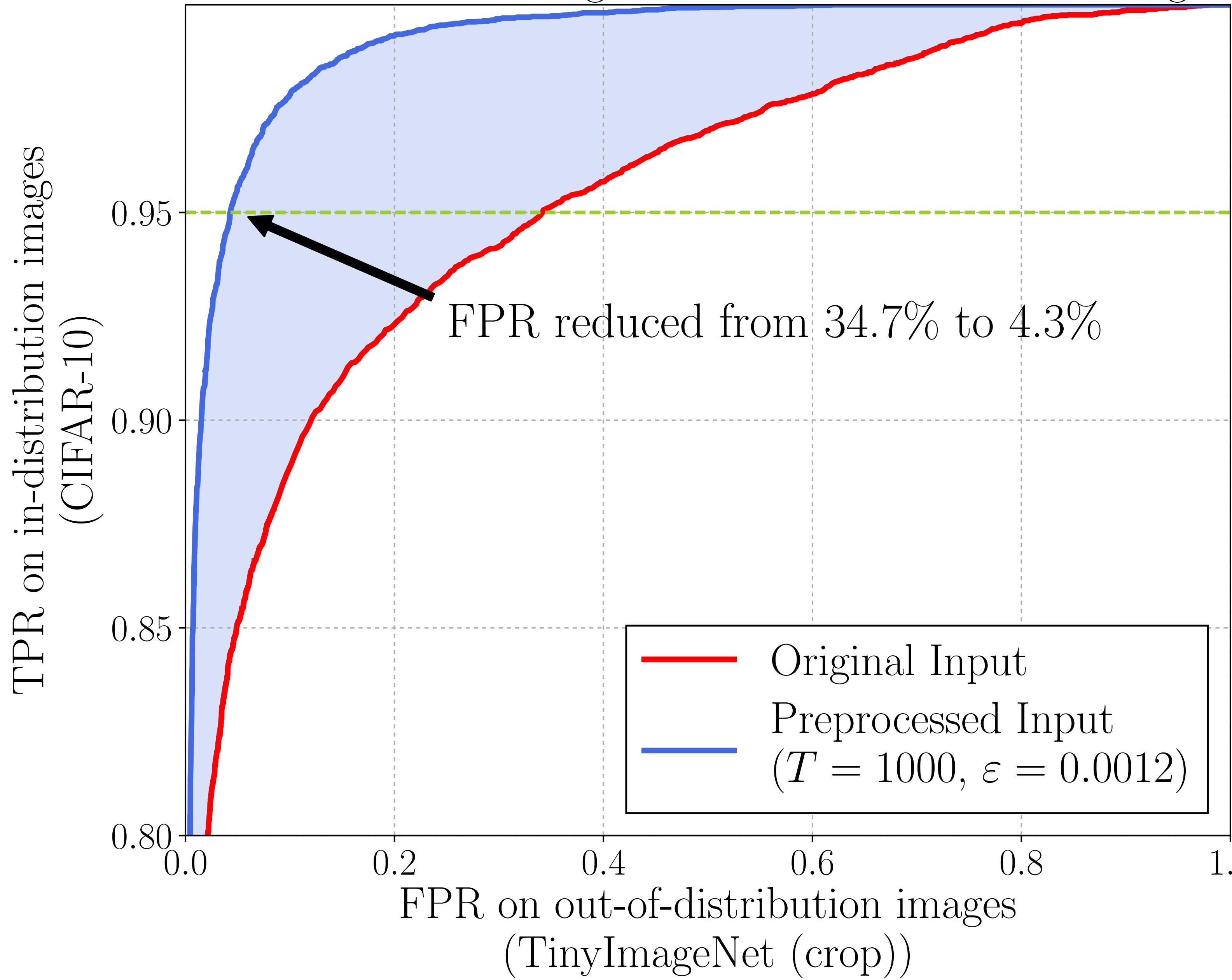
Detection Task

Out-of-distribution data



: Channel-wise concatenation

ROC curve of detecting in- and out-of-distribution images.



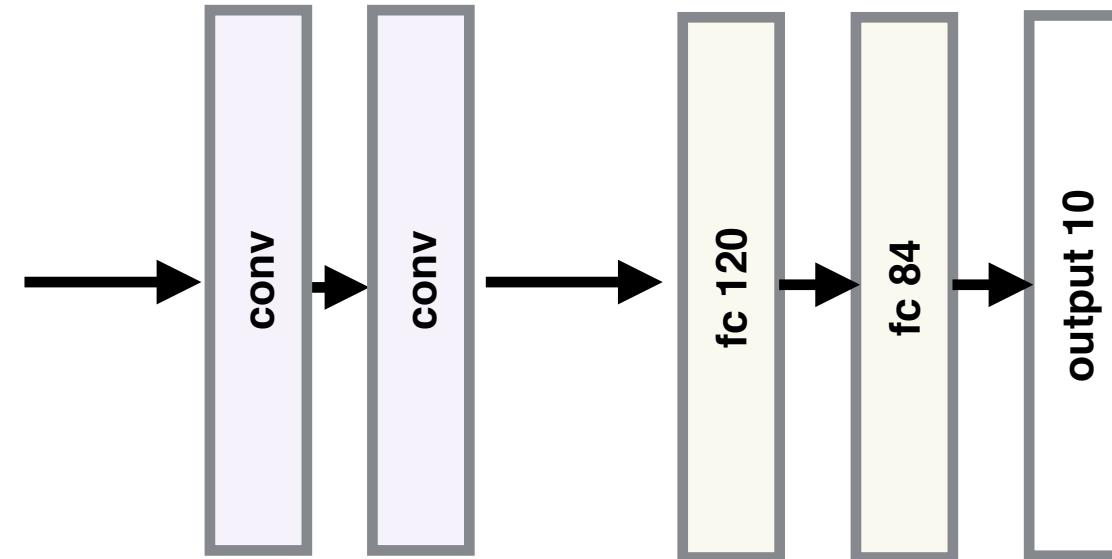
Results

The steps overview

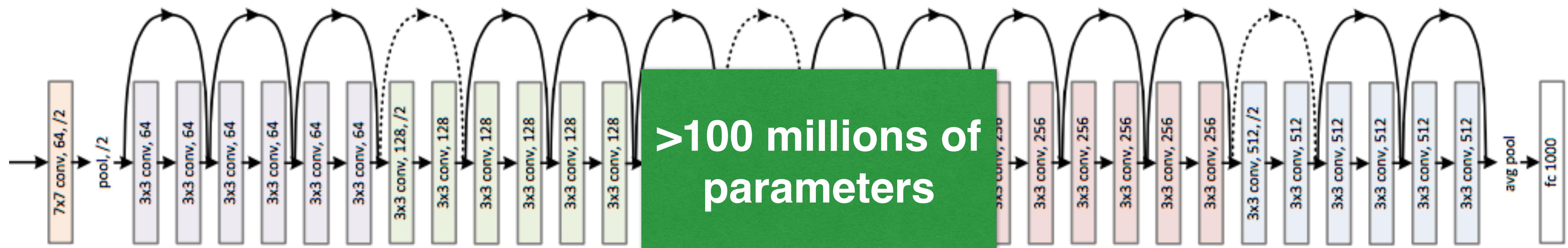
- Step 1: collect data
- Step 2: look at your data
- Step 3: Create train/dev/test splits
- Step 4: build model
- Step 5: Evaluate your model
- Step 6: Diagnose error and repeat

Industry-scale Machine Learning

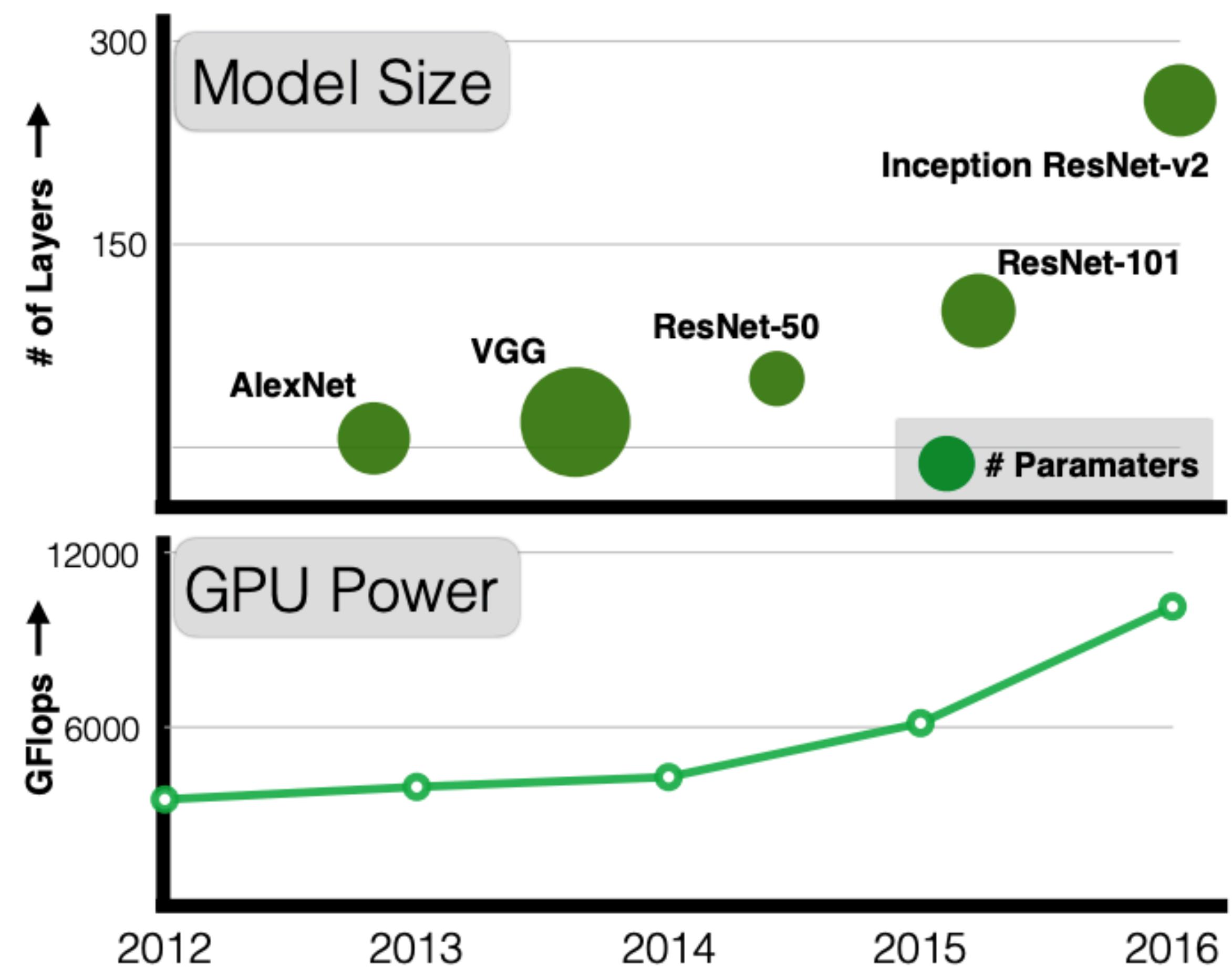
Model Complexity Keeps Increasing



LeNet (Lecun et al. 1998)



ResNet (He et al. 2016)



[Sun et al. 2017]

Challenge: Limited labeled data

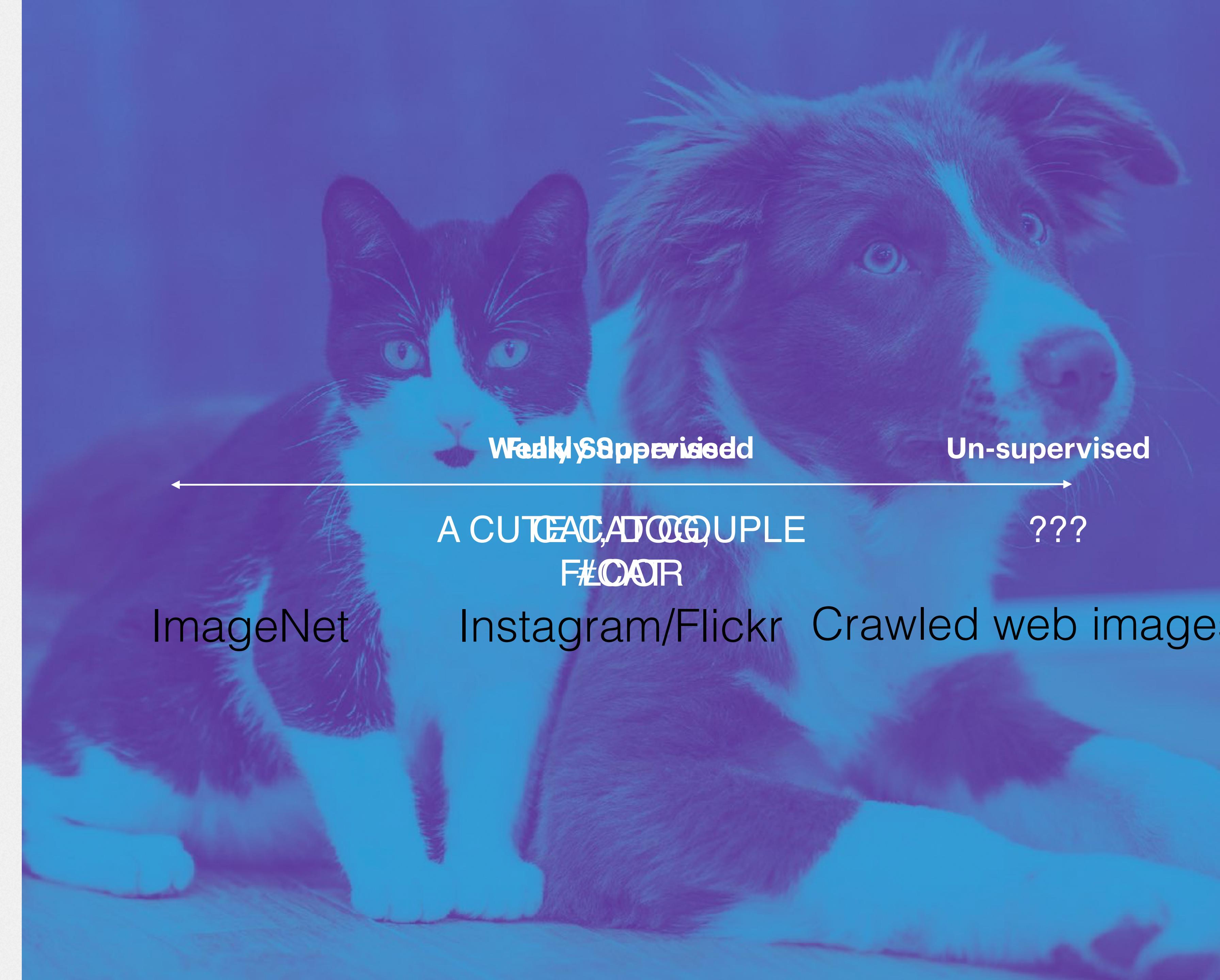
ImageNet, 1M images
~thousand annotation hours **x 1000**

1B images
~million annotation hours

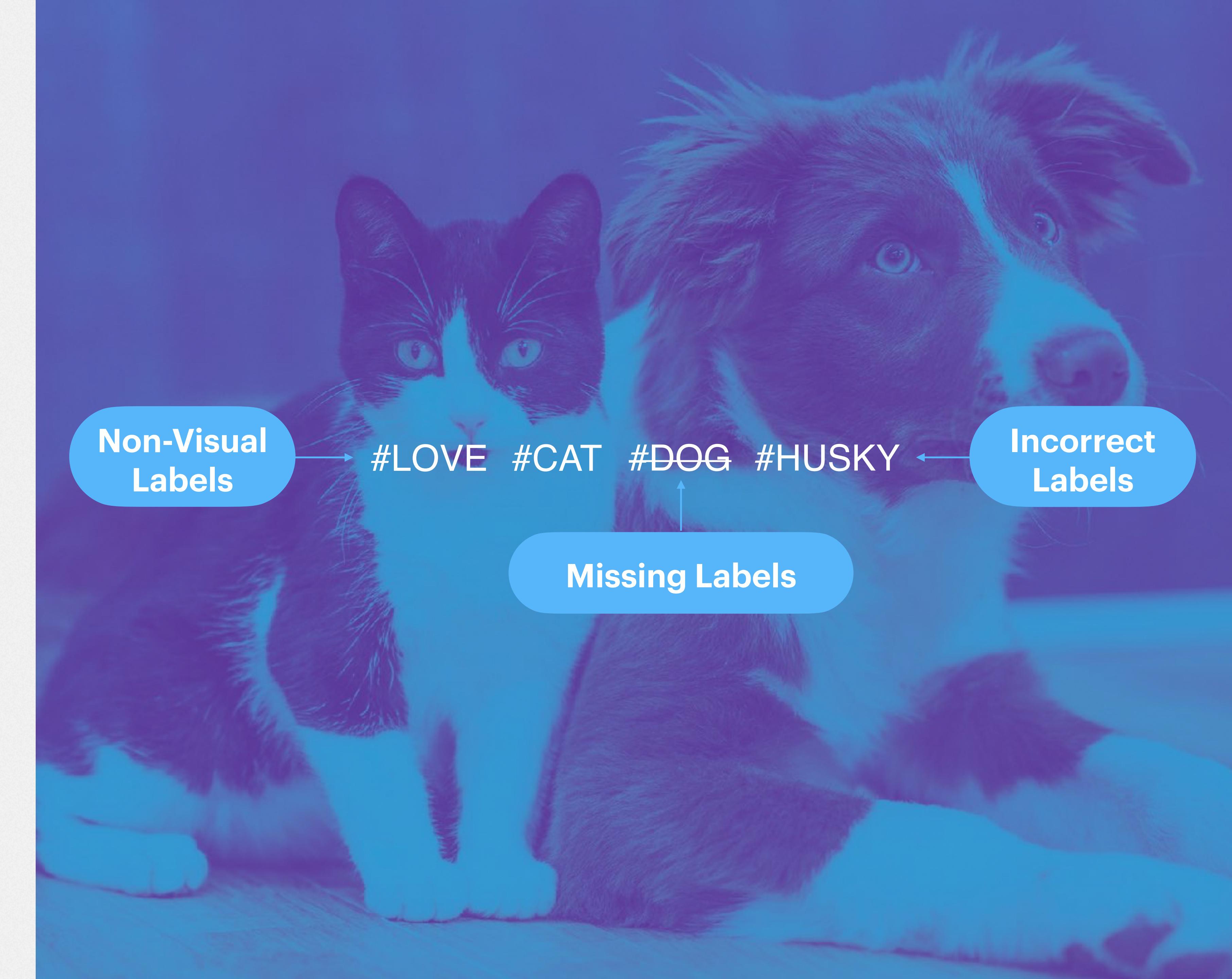
[Deng et al. 2009]

TRAINING AT SCALE

Levels of Supervision



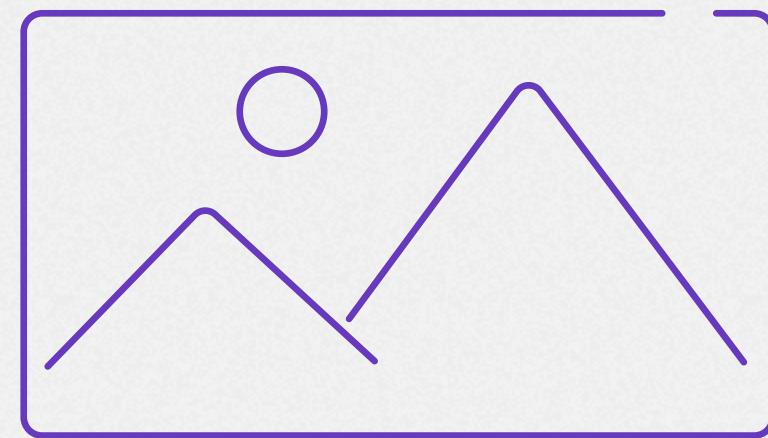
TRAINING AT SCALE Noisy Data



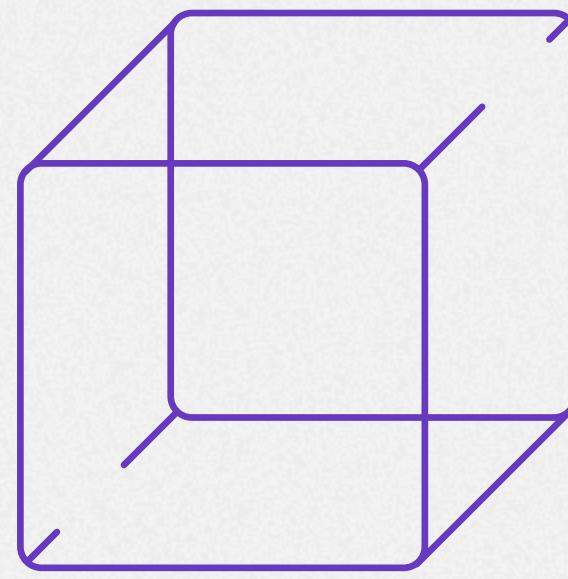
Can we use images with noisy labels
for training?

[Mahajan et al. 2018]

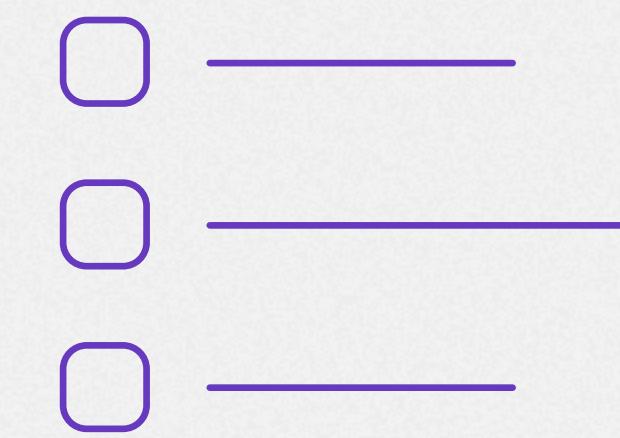
Largest Weakly Supervised Training



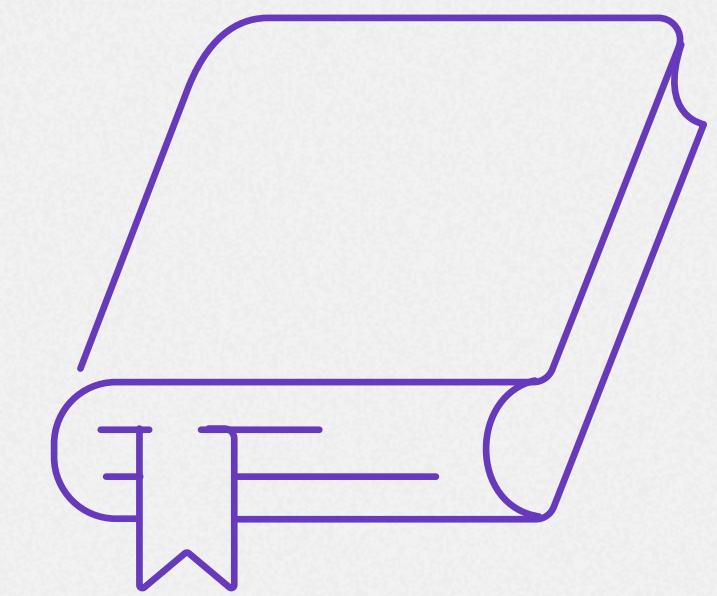
3.5B
PUBLIC INSTAGRAM
IMAGES



LARGE CAPACITY MODEL
(RESNEXT101-32X48)



17K UNIQUE LABELS



DISTRIBUTED
TRAINING
(350 GPUS)

[Mahajan et al. 2018]

Self-supervised Learning (no label)

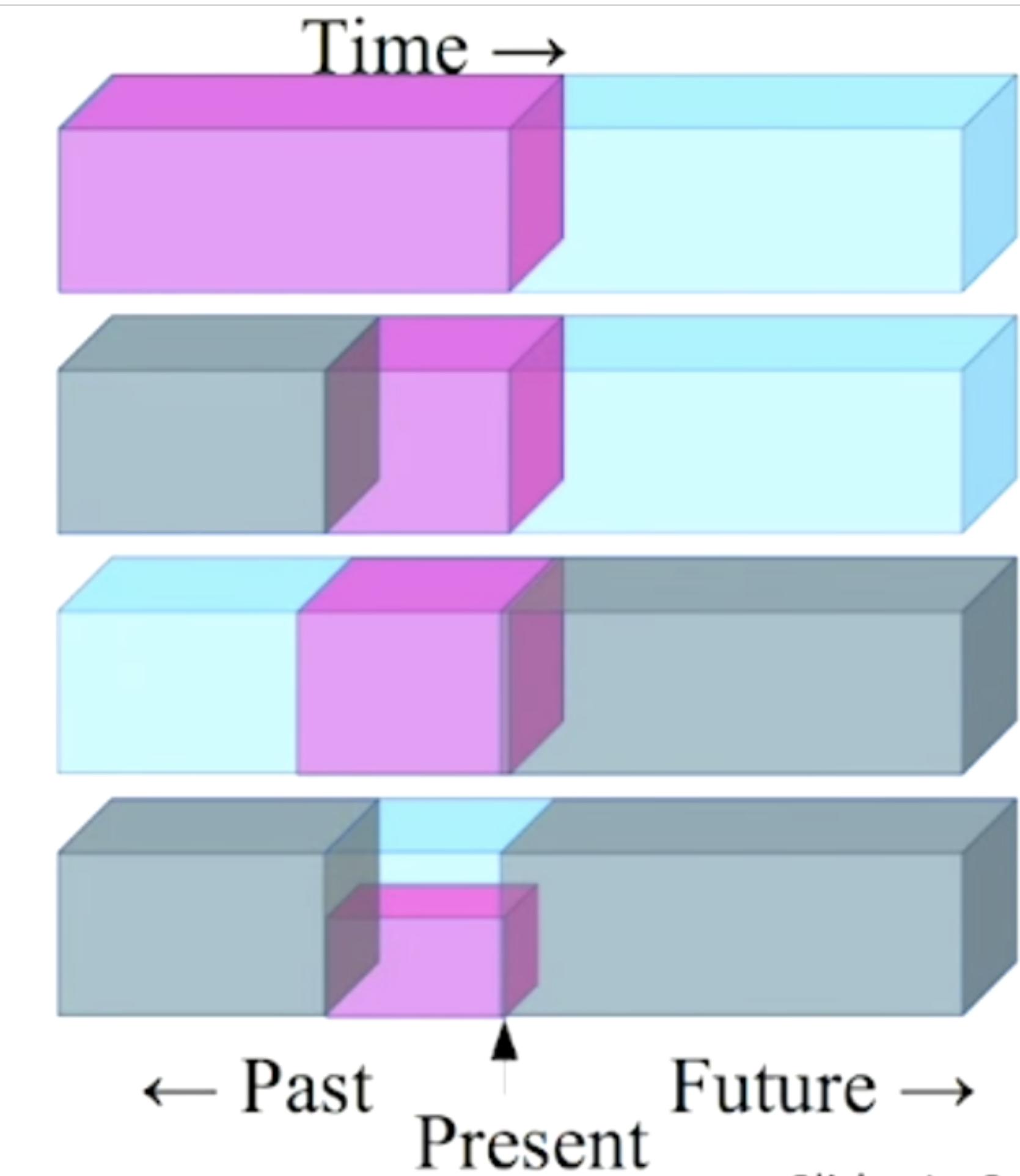
- ▶ “Pure” Reinforcement Learning (**cherry**)
 - ▶ The machine predicts a scalar reward given once in a while.
- ▶ **A few bits for some samples**
- ▶ Supervised Learning (**icing**)
 - ▶ The machine predicts a category or a few numbers for each input
 - ▶ Predicting human-supplied data
 - ▶ **10→10,000 bits per sample**
- ▶ Self-Supervised Learning (**cake génoise**)
 - ▶ The machine predicts any part of its input for any observed part.

Source: Yann LeCun’s talk

What if we can get labels for free for unlabelled data
and train unsupervised dataset in a supervised manner?

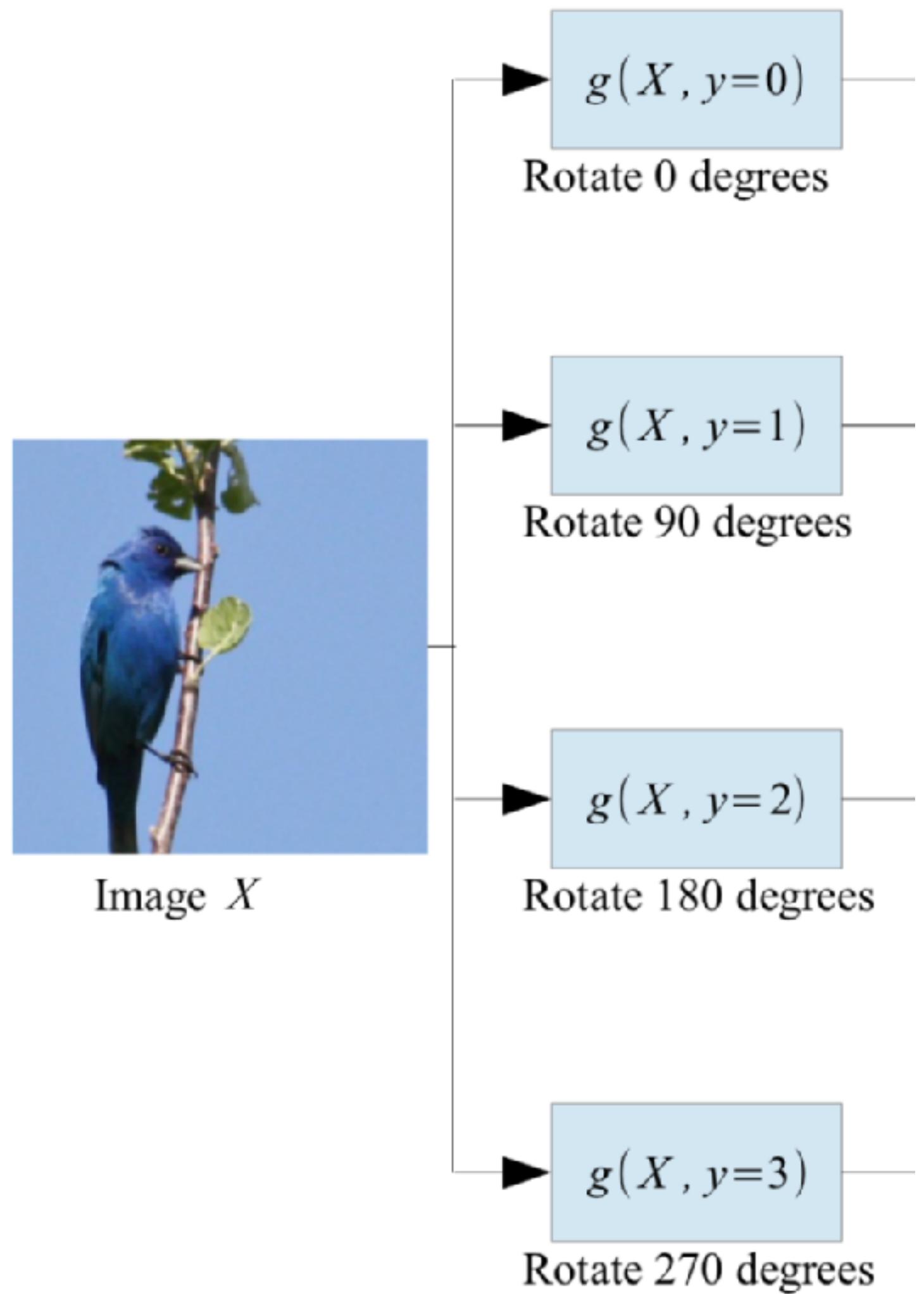
Pretext Tasks

- ▶ Predict any part of the input from any other part.
- ▶ Predict the **future** from the **past**.
- ▶ Predict the **future** from the **recent past**.
- ▶ Predict the **past** from the **present**.
- ▶ Predict the **top** from the **bottom**.
- ▶ Predict the **occluded** from the **visible**
- ▶ **Pretend there is a part of the input you don't know and predict that.**

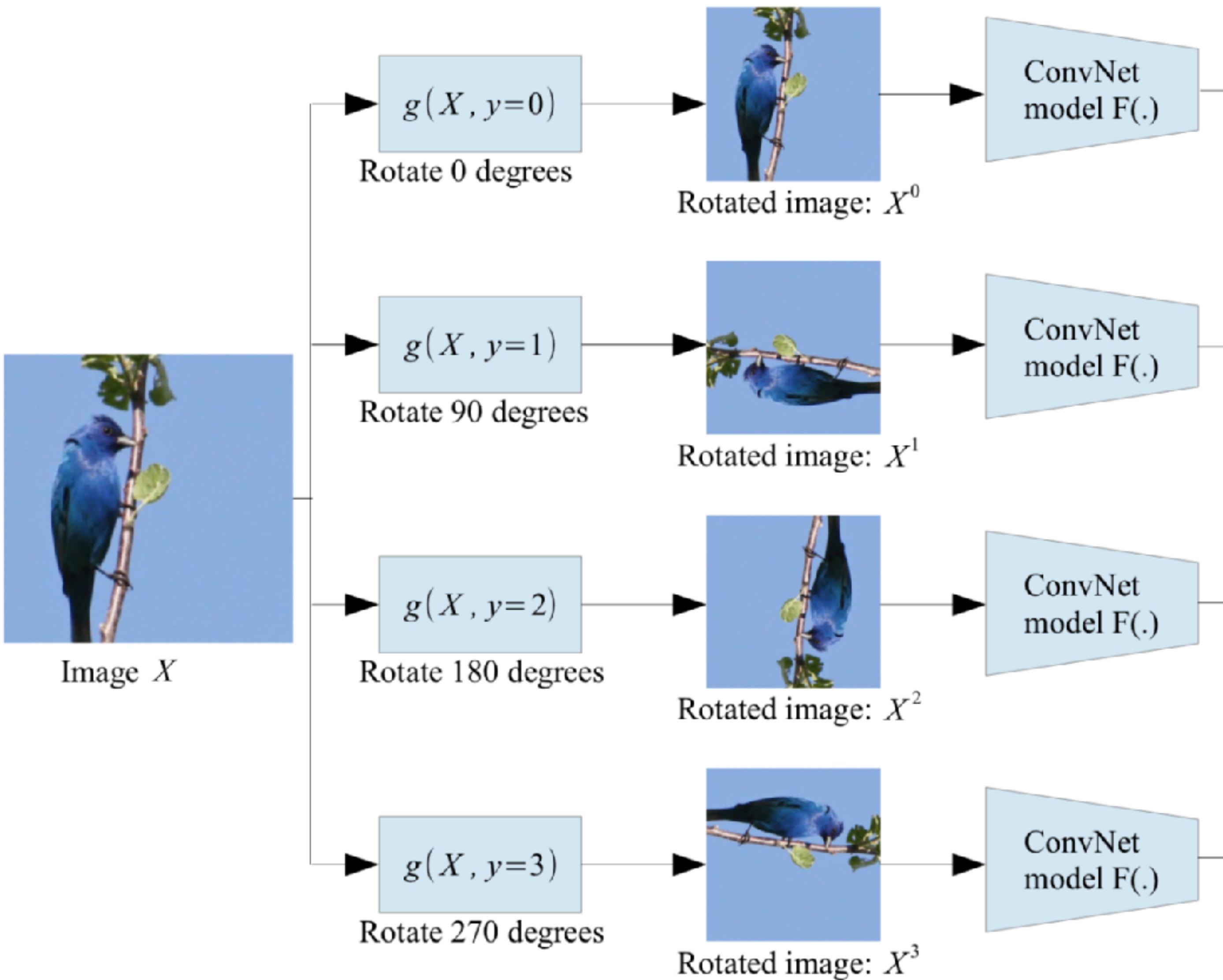


Slide: LeCun

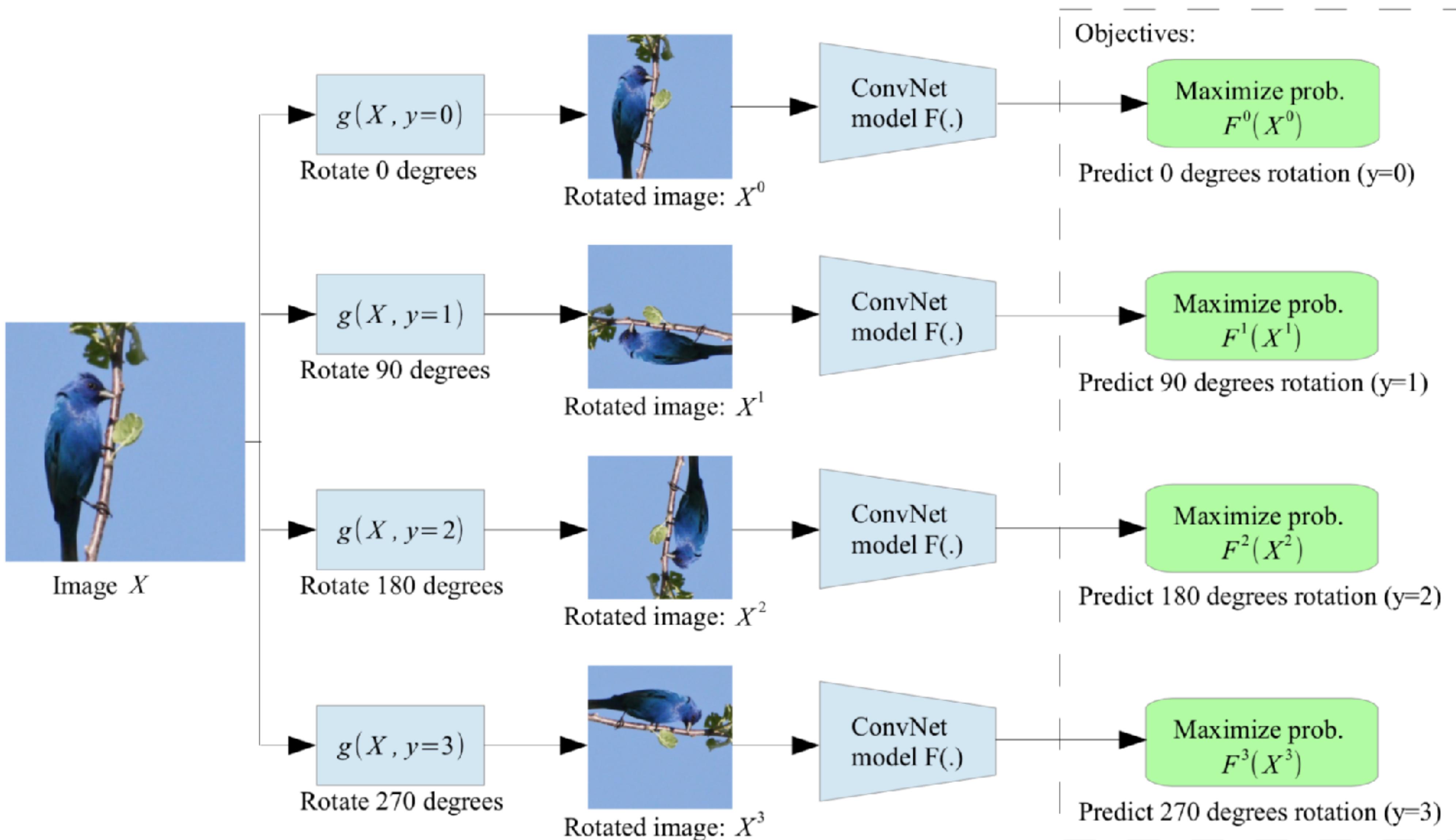
Rotation



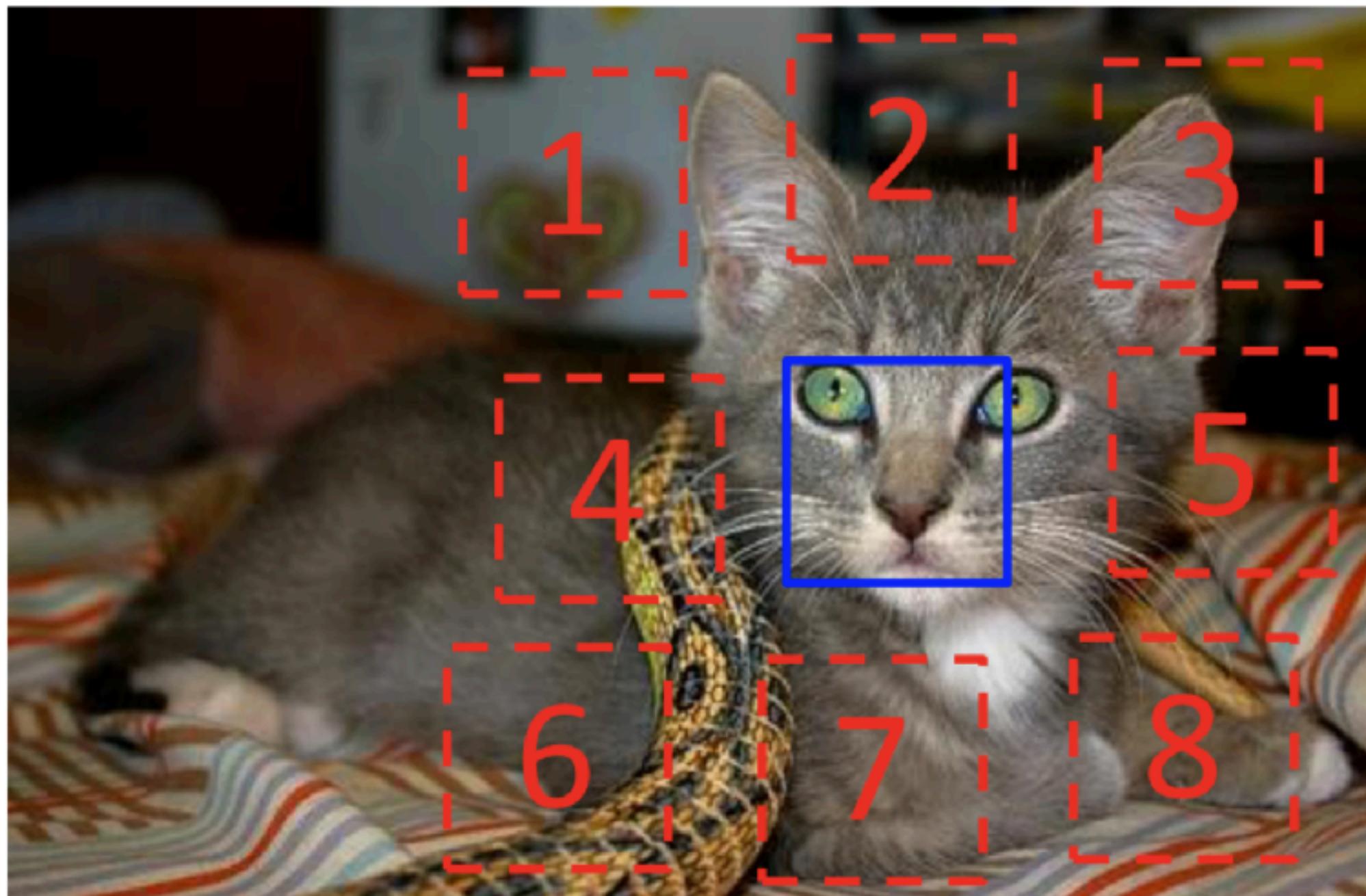
Rotation



Rotation

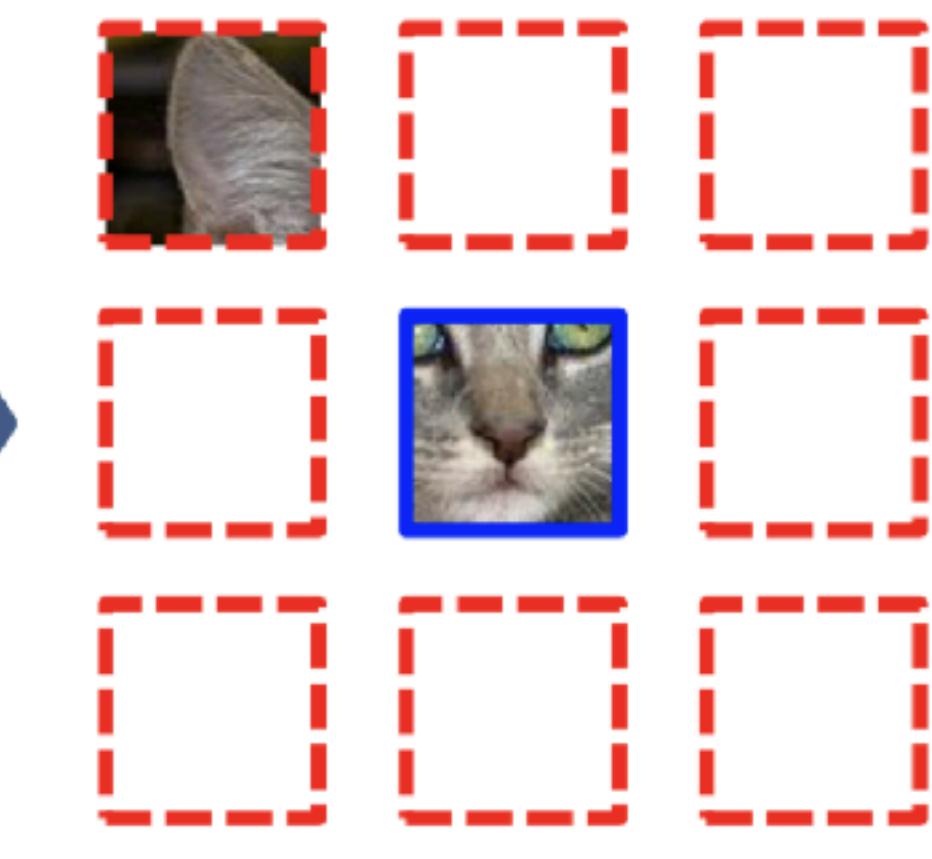


Patches



$$X = (\text{cat's eye}, \text{cat's ear}); Y = 3$$

Example:



Question 1:

Question 2:

Summary

- Basic steps to build an ML system
- Open-world machine learning
- Industry-scale machine learning

Thank you!