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A running example

Food Image Classifier

Training Data




Basic steps to build an ML system



The steps overview

» Step 1: collect data
» Step 2: look at your data

» Step 3: Create train/dev/test splits
» Step 4: build model

» Step 5: Evaluate your model

» Step 6: Diagnose error and repeat



Acquire and annotate data
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Data should be diverse

annotation can be expensive




Data should be realistic

ldeal data sampled from the distribution your product will be run on.

Real photo taken by users Professional ads photo



Look at your data.




Look at your data.

You have some food images,
take a closer look at them!

Food from Europe different than
from Africa? from Asia?

Any potential bias in your data?

Have the right people look at
your data.

Do this at every stage!




Expertise sometimes can be required

- Biomedical imaging annotation SHusion

can be expensive
» Professionally trained radiologists

» Domain knowledge Mass

Infiltration

Human
annotation
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Partitioning Data: Train, Test, and Validation

y 3
"TRAINING

DATA -

l ‘ | | J
| I I

(1) Fit model to the training dataset (2) Fit hyperparameters  (3) Test model
to the validation (or performance
development) dataset on the test set

Slides credit: Chris Re, Stanford CS229



What makes a good split?

* ldeal: Train, test, & dev randomly sampled

* Allows us to say train quality is
approximately test quality

* Test is a proxy for the real world!
e We'll talk more about this later...

* Challenge: Leakage.
* (Nearly) same example in train and deuv.

* Causes performance to be overstated!
* Eg., same senders in train and test?

Slides credit: Chris Re, Stanford CS229



Build your model.



Build your model.

A bag of learning algorithms
learned from class.

*Simple model vs. deep models



Underfitting —~— \/ WA

Ove I‘fitti n g Overfitting

Image credit: hackernoon.com



Model Capacity

» The ability to fit variety of functions

* Low capacity models struggles to ____._
fit training set ' ‘

» Underfitting
» High capacity models can

memorize the training set
» Overfitting



Underfitting and Overfitting

Data complexity

Simple Complex

Model Low Normal Underfitting
capacity

High Overfitting Normal



Data Complexity

« Multiple factors matters S POV
» # of examples
+ # of features in each example R

* time/space structure RN
o # of labels




Ablation studies.

* You've built up a model, it has many
different components.

* Which matter?
* which are stable?

* Remove one feature at a time!

* Adding features + baseline could
overestimate overlap. How?

* Measure performance.
* Critical for research!

Slides credit: Chris Re, Stanford CS229




A running example

Food Image Classifier
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Training Data

-world: Training and testing distributions match

-world: Training and testing distributions differ
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Food Image Classifier
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Out-of-distribution Uncertainty
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exp (fi(x))
Zj:l exp (f; ($)) “~

., softmax

Training examples:

confidence: max. p.
l l

High confidence in classifying traffic signs. |



Cross-Entropy Loss

softmax True label

' Lep= ), Yilog(S)

= — log(0.3)

S Y Goal: push S and Y to be identical



exp (fi(x))
Zj:l exp (f; ($)) “~

., softmax

Training examples:

confidence: max. p.
l l

High confidence in classifying traffic signs. |



: .. : .. softmax
Test time: out-of-distribution example R

0.85

Ideally: Low confidence in predicting as traffic sign |



Neural networks can be over-confident to
out-of-distribution (OOD) examples.

[Nguyen et al. 2015}



https://arxiv.org/search/cs?searchtype=author&query=Nguyen%2C+A

Confidence Score Distribution

- J i -

O 99 0.93 0.94

In-distribution

0.89

Score distribution

Confidence max. p.



How can we distinguish
out-of-distribution examples from
iIn-distribution data?



ODIN: Out-of-distribution Image Detector

[Liang et al. ICLR 2018]

Shiyu Liang Sharon Y. Li R. Srikant



ut-of-cdistribution Image Detector
exp (fi(x)/T)

i l) = —x ,
bl ) ijl exp (f;(x)/T)

In-distribution

- (ut-distribution

Score distribution

——H
LN Confidence max; p; :



Training Task

Iv\

In-distribution data: CIFAR-10
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Detection Task

Out-of-distribution data
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ROC curve of detecting in- and out-of-distribution images.

Results

0.95 1

FPR reduced from 34.7% to 4.3%

0.85 1

TPR on in-distribution images
(CIFAR-10)

— Original Input

Preprocessed Input
(T"= 1000, £ = 0.0012)

0.0 0.9 0.4 0.6 0.8 1.0
FPR on out-of-distribution images

(TinylmageNet (crop))



The steps overview

» Step 1: collect data
» Step 2: look at your data

» Step 3: Create train/dev/test splits
» Step 4: build model

» Step 5: Evaluate your model

» Step 6: Diagnose error and repeat



Industry-scale Machine Learning




Model Complexity Keeps Increasing

_>I.I_>I—H L eNet (Lecun et al. 1998)

!

7x7 conv, 64, /2

< 12z [zlllz] [ T | (2l (BNl [BIEIS| [2lI2] 12lllg] |2

Q 3":‘:;;.';.?.?';‘;3‘:‘;‘;‘;‘;

>2 Jleblgklgklgk Teiigiigbiiglligligl gl lgklgblgkligh

: SRRl parameters 2| 12| |3l |2| (2] (3] (2] (=] || 2| |2
m m

ResNet (He et al. 2016)

avg pool

fc 1000




300

Model Size ‘

1 Inception ResNet-v2
i 150
3 ResNet-101
© ResNet-50
* VGG

AlexNet ‘

. # Paramaters
12000 §

' GPU Power i
/)]
o
© 6000 .
™
O ° e

2012 2013 2014 2015 2016

[Sun et al. 2017]



Challenge: Limited labeled data

ImageNet, 1M images 1000 1B Images
~thousand annotation hours X ~million annotation hours

1Deng et al. 2009]



TRAINING AT SCALE

Wedkib8pperisedd Un-supervised

Levels of A CUTEAT ATAR)UPLE 299
Supervision FECOR




TRAINING AT SCALE

Non-Visual #LOVE #CAT #DOG #HUSKY Incorrect
Labels Labels

Noisy Data

Missing Labels




Can we use images with noisy labels
for training”

IMahajan et al. 2018]



Largest Weakly Supervised Training
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[Mahajan et al. 2018]
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P “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar reward given once in a
while.

» A few bits for some samples

P Supervised Learning (icing)

» The machine predicts a category or a few numbers
for each input

» Predicting human-supplied data
» 10—-10,000 bits per sample

P Self-Supervised Learning (cake génoise)

» The machine predicts any part of its input for any " : AN )
observed part. s —

a

Source: Yann LeCun’s talk



What if we can get labels for free for unlabelled data
and train unsupervised dataset in a supervised manner”?
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Pretext Tasks

Predict any part of the input from any
other part.

Predict the future from the past.

Predict the "uture from the recent past.

Predict the past from the present.
Predict the top from the bottom.

Predict the occluded from the visible

Pretend there is a part of the input you
don’t know and predict that.

.l

. .

<

Past

P

resent

Future —
Slide: LeCun



Rotation

> 2(X,y=0)

Rotate 0 degrees

—» g(X,y=1) —

Rotate 90 degrees

—» g(X,y=2) —

Rotate 180 degrees

> og(X,y=3)

Rotate 270 degrees

[Gidaris et al. 2018]



https://arxiv.org/abs/1803.07728

Rotation
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ConvNet
> o(X,y=0) > model F(.)

Rotate 0 degrees .
Rotated image: X

ConvNet W

> g(X.y=1) model F(.)

Rotate 90 degrees
Rotated image: X'

ConvNet
model F(.) N

— g(X,y=2)

Rotate 180 degrees
Rotated image: X

-~ g(X, y=3)

Rotate 270 degrees

Rotated image: X~

Gidaris et al. 2018



Rotation
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| Objectives:
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ConvNet > Maximize prob.
> g(X,y=0) > model F(.) F'(Xx°)

Predict 0 degrees rotation (y=0)

e

—
L

Rotate 0 degrees
Rotated image: X"

—

T r—
—

-

— _— —
— ~ N

—» g(X,y=1)

ConvNet > Maximize prob.
model F(.) F'(x"

- Predict 90 degrees rotation (y=1) ‘

— el
s

Rotate 90 degrees
Rotated image: X' ‘

—
—
——
—

— — —
— - ~
——

ConvNet p Maximize prob.
model F(.) \ F*(X?)

—» g(X,y=2)

. o

Rotate 180 degrees Predict 180 degrees rotation (y=2)

Rotated image: X~

p Maximize prob.
- FX)
Predict 270 degrees rotation (y=3)

Gidaris et al. 2018

-~ glXx, y=3)

Rotate 270 degrees

Rotated image: X~




Patches

[Doersch et al., 2015]



https://arxiv.org/abs/1505.05192

Summary

* Basic steps to build an ML system
* Open-world machine learning
* Industry-scale machine learning
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Thank you!



